Circular law for random matrices with exchangeable entries.

Authors
Publication date
2015
Publication type
Journal Article
Summary An exchangeable random matrix is a random matrix with distribution invariant under any permutation of the entries. For such random matrices, we show, as the dimension tends to infinity, that the empirical spectral distribution tends to the uniform law on the unit disc. This is an instance of the universality phenomenon known as the circular law, for a model of random matrices with dependent entries, rows, and columns. It is also a non-Hermitian counterpart of a result of Chatterjee on the semi-circular law for random Hermitian matrices with exchangeable entries. The proof relies in particular on a reduction to a simpler model given by a random shuffle of a rigid deterministic matrix, on Hermitization, and also on combinatorial concentration of measure and combinatorial Central Limit Theorem. A crucial step is a polynomial bound on the smallest singular value of exchangeable random matrices, which may be of independent interest.
Publisher
Wiley
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr