Contraintes de densité dans le transport optimal, les EDP et les jeux de champ moyen.

Auteurs
  • MESZAROS Alpar richard
  • SANTAMBROGIO Filippo
  • BRENIER Yann
  • SANTAMBROGIO Filippo
  • BRENIER Yann
  • CARLIER Guillaume
  • NAZARET Bruno
  • MAURY Bertrand
  • SILVA Francisco
  • CARLIER Guillaume
Date de publication
2015
Type de publication
Thèse
Résumé Movité par des questions posées par F. Santambrogio, cette thèse est dédiée à l'étude de jeux à champ moyen et des modèles impliquant le transport optimal avec contraintes de densité. A fin d'étudier des modèles de MFG d'ordre deux dans l'esprit des travaux de F. Santambrogio, on introduit en tant que brique élementaire un modèle diffusif de mouvement de foule avec contraintes de densité (en généralisant dans une sense les travaux de Maury et al.). Le modèle est décrit par l'évolutions de la densité de la foule, qui peut être vu comme une courbe dans l'espace de Wasserstein. Du point de vu EDP, ça correspond à une équation de Fokker-Planck modifiée, avec un terme supplémentaire, le gradient d'une pression (seulement dans la zone saturée) dans le drift. En passant par l'équation duale et en utilisant des estimations paraboliques bien connues, on démontre l'unicité du pair densité et pression. Motivé initialement par l'algorithm de splitting (utilisé dans le résultat d'existence ci-dessus), on étudie des propriétés fines de la projection de Wasserstein en dessous d'un seuil donné. Intégrant cette question dans une classe plus grande de problèmes impliquant le transport optimal, on démontre des estimations BV pour les optimiseurs. D'autres applications possibles (en transport partiel, optimisation de forme et problèmes paraboliques dégénérés) de ces estimations BV sont également discutées.En changeant le point de vu, on étudie également des modèles de MFG variationnels avec contraintes de densité. Dans ce sens, les systèmes de MFG sont obtenus comme conditions d'optimalité de premier ordre pour deux problèmes convexes en dualité. Dans ces systèmes un terme additionnel apparaît, interpreté comme un prix à payer quand les agents passent dans des zones saturées. Premièrement, en profitant des résultats de régularité elliptique, on montre l'existence et la caractérisation de solutions des MFG de deuxième ordre stationnaires avec contraintes de densité. Comme résultat additionnel, on caractérise le sous-différentiel d'une fonctionnelle introduite par Benamou-Brenier pour donner une formulation dynamique du problème de transport optimal. Deuxièmement, (basé sur une technique de pénalisation) on montre qu'une classe de systèmes de MFG de premier ordre avec contraintes de densité est bien posée. Une connexion inattendu avec les équations d'Euler incompressible à la Brenier est égalment donnée.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr