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Abstract
We study an extension of the Heston stochastic volatil-
ity model that incorporates rough volatility and jump
clustering phenomena. In our model, named the rough
HawkesHeston stochastic volatilitymodel, the spot vari-
ance is a rough Hawkes-type process proportional to
the intensity process of the jump component appearing
in the dynamics of the spot variance itself and the log
returns. Themodel belongs to the class of affine Volterra
models. In particular, the Fourier-Laplace transform of
the log returns and the square of the volatility index can
be computed explicitly in terms of solutions of determin-
istic Riccati-Volterra equations, which can be efficiently
approximated using a multi-factor approximation tech-
nique. We calibrate a parsimonious specification of our
model characterized by a power kernel and an exponen-
tial law for the jumps. We show that our parsimonious
setup is able to simultaneously capture, with a high pre-
cision, the behavior of the implied volatility smile for
both S&P 500 and VIX options. In particular, we observe
that in our setting the usual shift in the implied volatil-
ity of VIX options is explained by a very low value of
the power in the kernel. Our findings demonstrate the
relevance, under an affine framework, of rough volatil-
ity and self-exciting jumps in order to capture the joint
evolution of the S&P 500 and VIX.
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1 INTRODUCTION

The Black-Scholes model, where volatility is constant, andmore generally classical local volatility
models, where volatility is a function of time and spot asset prices, fail to reproduce the dynamics
of implied volatility smiles of optionswritten on the underlying asset. To overcome this limitation,
multiple stochastic, stochastic-local, and path-dependent volatility models have been developed
and studied in recent years. The complexity of volatility modeling, however, has increased with
the significant growth over time ofmarkets on volatility indices, such as the VIX. The rise in popu-
larity of thesemarkets is explained in part by their relevance to protect portfolios Rhoads (2011). It
has therefore become fundamental to develop stochastic models able to capture the joint dynam-
ics of the underlying prices and their volatility index. This modeling challenge, known as the joint
S&P 500/VIX calibration puzzle (Guyon, 2020a; Guyon, 2020b), has inspired the introduction of
more sophisticatedmodels, for example, Abi Jaber et al. (2022a), Abi Jaber et al. (2022b), Cuchiero
et al. (2022), Gatheral et al. (2020), Guyon (2020b), Guyon and Lekeufack (2022), Rømer (2022a),
that incorporate new features to the joint dynamics of the underlying and the volatility in order
to solve the problem. In this paper we tackle the challenge by proposing a tractable affine model
with rough volatility and volatility jumps that cluster and that have the opposite direction but
occur at the same time as the jumps of the underlying prices. In this introduction we give a brief
literature review to explain the choice of our framework.
The dynamics of the VIX volatility index are highly complex. In particular, they exhibit large

and systematically positive variations over very short periods, with a tendency to form clusters of
spikes during difficult periods like the 2008 financial crisis and the beginning of the COVID-19
pandemic in 2020. This is accompanied by very long periods without any large fluctuation and a
less important mean reversion speed. These observations are in line with an increasing number of
studies that indicate the presence of jumps in the volatility (Dotsis et al., 2007; Todorov&Tauchen,
2011), on the underlying (Bates, 1996), and the fact these jumps are common to the volatility and
underlying (Cont & Kokholm, 2013; Sepp, 2008).
The growing interest in volatility indices has driven the standardization of contingent claims

written on the volatility indices themselves. These volatility index markets have very unique fea-
tures. For VIX futures and exchange-traded products these features are studied in Avellaneda and
Papanicolaou (2018). The complexity of volatility markets is also exemplified by the difficulty to
jointly model the behavior of the volatility smiles of vanilla options written on the underlying
and its volatility index, see for instance Alos et al. (2022), Pacati et al. (2018), Papanicolaou (2022),
and Recchioni et al. (2021). This longstanding puzzle is known as the S&P 500 (SPX)/VIX calibra-
tion puzzle. A growing body of literature explains the difficulty arguing that “the state-of-the-art
stochastic volatility models in the literature cannot capture the S&P 500 and VIX option prices
simultaneously,” see Song and Xiu (2012). As pointed out in Guyon (2020b), “all the attempts at
solving the joint SPX/VIX smile calibration problem only produced imperfect, approximate fits.”
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The problem is that usual stochastic models either fail to reproduce one or both shapes of the
implied volatility for S&P 500 and VIX options or, when both the shapes are coherent, the implied
volatility levels are incorrect.
Access to high frequency data has improved our understanding of the microstructure of finan-

cial markets and the effects on volatility. In particular, recent studies indicate that non-Markovian
models with rough volatility trajectories might be appropriate to better capture long time depen-
dencies due to meta orders and the large contribution of automatic orders. This is examined in
Cont (2011) which provides a general analysis of order-driven markets, the work in Comte and
Renault (1998) which elucidates thememory-features of volatility, and the studies in El Euch et al.
(2018), andGatheral et al. (2018)which give amicro-structural justification to the newly developed
rough volatility models.
From a modeling point of view, affine models provide a convenient framework because they

are flexible and, thanks to semi-explicit formulas for the Fourier-Laplace transform, fast compu-
tations can be performed using Fourier-based techniques (Duffie et al., 2000; Duffie et al., 2003;
Filipović, 2001). The most popular affine stochastic volatility model is the Heston model Heston
(1993), where the spot variance is a square-rootmean-revertingCIR (Cox-Ingersoll-Ross-Cox et al.,
1985) process. Thismodel is able to reproduce some stylized features like themean-reverting prop-
erty of the volatility and the leverage effect. It is, however, unable to reproduce other phenomena
such as extreme paths of volatility during crisis periods (even for large values of the volatility of
volatility parameter) and the at-the-money (ATM) skews of underlying options’ implied volatility
simultaneously for short and long maturities. These limitations, and the micro-structural behav-
ior of markets described in the previous paragraph, motivated the introduction of the rough
Heston model (El Euch & Rosenbaum, 2018; El Euch & Rosenbaum, 2019). The rough Heston
model is tractable as it belongs to the class of affine Volterra models (Abi Jaber et al., 2019), and
semi-explicit formulas for the Fourier-Laplace transform are still available. Unfortunately, this
model cannot reproduce the features of options written on the volatility index and the underlying
simultaneously (see Subsection 6.1).
In order to model the joint behavior of S&P 500 and VIX markets, consistent with empirical

evidence, we add two specific features to the usual Heston model. First, we incorporate rough
volatility by adding a power kernel proportional to 𝑡𝛼−1, with 𝛼 ∈ (1∕2, 1], to the dynamics of
the spot variance. Second, we postulate common jumps for the volatility and the underlying with
a negative leverage. The presence of jumps in both underlying and variance helps to reproduce
a skewed implied volatility for vanilla options as in the Barndorff-Nielsen and Shephard model
(Barndorff-Nielsen & Shephard, 2001a; Barndorff-Nielsen & Shephard, 2001b). Inspired by the
Hawkes framework, taking into account jump-clustering and endogeneity of financial markets,
we model the spot variance to be proportional to the intensity process of the jump component
appearing in the dynamics of the spot variance itself and the log returns. For these reasons,
we name our model the rough Hawkes Heston model. Our approach shares similarities with the
study in Bernis et al. (2021), which demonstrates that an exponential law for the jump size can
capture upward VIX implied volatility within a Hawkes framework with an exponential kernel.
Alternatively, other studies such as Jiao et al. (2021) and Nicolato et al. (2017) have explored the
inclusion of more general jump measures. The advantage of the rough Hawkes Heston model
over the aforementioned works is the possibility to achieve a joint calibration of the SPX/VIX
smiles, while utilizing a simple and parsimonious specification for the jump distribution, namely
an exponential law (see Section 6).
To keep mathematical and numerical tractability, we choose an affine specification of the

model. As such, our model belongs to the class of affine Volterra processes (Abi Jaber et al.,
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2019), which has been recently extended to jump processes in Bondi et al. (2024), Cuchiero and
Teichmann (2019), Cuchiero and Teichmann (2020). In particular, the Fourier-Laplace transform
of the log returns and the square of the volatility index can be computed explicitly in terms of solu-
tions of deterministic Riccati-Volterra equations, see Theorems 3.3 and 4.6. We approximate the
solutions of the Riccati-Volterra equations via a multi-factor scheme as in Abi Jaber and El Euch
(2019b) applying a recent Gaussian quadrature method in Bayer and Breneis (2023), see Theo-
rem 5.1 and Remark 5.2. We leave for future study the implementation and analysis in our frame-
work of other methods such as the Adams method (Diethelm et al., 2002; Diethelm et al., 2004),
asymptotic formulas inspired by forest expansions in the spirit of Alos et al. (2020), and hybrid
approximation techniques for Volterra equations similar to those inCallegaro et al. (2021). Itmight
be also interesting to investigate an adaptation to Riccati-Volterra equations of the hybrid multi-
factor approach proposed in Rømer (2022b) for the discretization of stochastic Volterra equations.
The affine property is an advantage of ourmodeling approach compared to other recentmodels

proposed to solve the SPX/VIX calibration problem, such asAbi Jaber et al. (2022a), Cuchiero et al.
(2023), Gatheral et al. (2020), Guyon and Mustapha (2022), Rosenbaum and Zhang (2021), where
pricing is done via Monte Carlo or machine learning techniques. In the case of signature-based
models (Cuchiero et al., 2022; Cuchiero et al., 2023), their affine nature is explored in (Cuchiero
et al., 2023, Section 6). However, no numerical experiments involving Fourier pricing techniques
are presented, partly due to the challenging structure of the resulting Riccati equations. Our affine
framework is convenient also because variance swap rates and the square VIX index have explicit
affine relations to the forward curve, see Corollary 4.2 and Remark 4.3. This is a generalization, to
the affine Volterra setting, of the affine relation already pointed out in Kallsen et al. (2011) within
the classical affine exponential framework and empirically confirmed in Mancino et al. (2020).
Previous literature on jump-diffusionmodels focusing on the evolution of S&P 500 and the VIX

proposes either high-dimensional models (Pacati et al., 2018; Sepp, 2008), or models based on hid-
denMarkov chains (Goutte et al., 2017; Papanicolaou & Sircar, 2014). Thesemodels require a large
number of parameters or suffer from the lack of interpretability of the random factors. It is also
important to mention (Cont & Kokholm, 2013), where the authors investigate a forward variance
jump model which allows them to price options on the volatility index by Fourier inversion tech-
niques. To price options on the underlying asset, however, this approach requires a Monte Carlo
simulation of the variance swap rates, and it might introduce additional parameters for every con-
sidered maturity. Our approach to model the joint SPX/VIX dynamics is different. As in Bernis
et al. (2021), we keep the number of parameters low by assuming that the jump intensity is pro-
portional to the variance process itself, and jumps are common to the volatility and underlying
with opposite signs. Themain new ingredient of ourmodel, compared to Bernis et al. (2021), is the
addition of a Brownian component and a power kernel to the variance process. This generates by
construction a jump clustering effect and takes into account related findings in the rough volatil-
ity literature (Alos et al., 2007; Alos & Shiraya, 2019; Bayer et al., 2016; Bennedsen et al., 2021;
El Euch et al., 2018; El Euch & Rosenbaum, 2019; Fukasawa, 2017; Gatheral et al., 2018; Gatheral
et al., 2020; Livieri et al., 2018). In particular, our model is consistent with the so-called Zumbach
effect. Indeed, in this paper we suggest an extension of the roughHestonmodel, which reproduces
the Zumbach effect according to El Euch et al. (2020).
The rough Hawkes Heston model is able to reconcile the shapes and level of the S&P 500 and

VIX volatility smiles. An important role is played by the parameter 𝛼 characterizing the kernel.
As is the case for other rough volatility models, this parameter controls the term structure of ATM
skews for SPX option smiles. We show that when 𝛼 is near to 1∕2, the power law is in the range
[0.5, 0.6]. This is consistent with similar findings in the rough volatility literature (Alos & Shiraya,
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2019; Bayer et al., 2016; Bennedsen et al., 2021; El Euch et al., 2018; Fukasawa, 2017; Gatheral
et al., 2018; Gatheral et al., 2020). In addition, in our framework, the parameter 𝛼 plays a crucial
role because it controls the level of the implied volatility of VIX options for short maturities. We
observe, that as 𝛼 approaches 1∕2 the levels of S&P 500 and VIX smiles are coherent.
To summarize, the model that we propose in this paper shares many features with other

existing models. These features are mainly: rough volatility (Bayer et al., 2016; El Euch et al.,
2018; El Euch & Rosenbaum, 2019; Fukasawa, 2017; Gatheral et al., 2018; Gatheral et al., 2020),
jumps (Barndorff-Nielsen & Shephard, 2001a, Barndorff-Nielsen & Shephard, 2001b; Bates, 1996;
Cont & Kokholm, 2013; Grzelak, 2022; Pacati et al., 2018; Sepp, 2008), the Hawkes/branching
character of volatility (Bernis et al., 2021; Brignone & Sgarra, 2019; Horst & Xu, 2022), and the
affine structure (Abi Jaber et al., 2019; Bondi et al., 2024; Duffie et al., 2003; Duffie et al., 2000;
Filipović, 2001; Kallsen et al., 2011; Jiao et al., 2021).
Consequently we take advantage of the low regularity and memory features of rough volatility

models, the large fluctuation of jumps, the clusters of Hawkes processes and the explicit Fourier-
Laplace transform of the affine setup. The specification that we adopt for the joint SPX/VIX
calibration is parsimonious with only five evolution-related parameters. Moreover, all the param-
eters have a financial interpretation. The parameter 𝛼 in the kernel controls the decay of the
volatility memory, SPX ATM skews and the level of VIX smiles. We have in addition the classical
parameters controlling the volatility mean reversion speed and the volatility of volatility, and two
parameters related to the leverage effect that specify the correlation between Brownian motions
and between the jumps in the asset and its volatility. Despite its robustness, the rough Hawkes
Heston stochastic volatility model captures remarkably well the implied volatility surfaces of S&P
500 and VIX at the same time.
The paper is organized as follows. Section 2 lays out the essential hypotheses of our study and

introduces the stochastic model in a general setup, that is, with a general kernel and law for the
jumps. Section 3 explains the derivation of the Fourier-Laplace transform of the log returns and
the application to option pricing on the underlying. Section 4 focuses on the VIX index charac-
terizing the Fourier-Laplace transform of the VIX2, and describes the Fourier-based formulas to
price options on the VIX. Section 5 studies the multi-factor numerical scheme used in order to
approximate the solutions to the Riccati-Volterra equations arising in Sections 3 and 4. Section 6
details the calibration of our model to S&P 500 and VIX options data, showing also a compari-
son with the (continuous) rough Heston model, see Subsection 6.1. Section 7 presents a complete
and detailed sensitivity analysis of implied volatility curves with respect to the model parameters.
In particular, Subsection 7.1 focuses on the effect of the jump component. Section 8 summarizes
the conclusions of our study. Appendix A contains the proof of the necessary existence, unique-
ness and comparison results for the Riccati-Volterra equations appearing in Section 3. Appendix B
presents the proof of the Fourier-inversion formula used to price options on the underlying. To
finish, in Appendix C we prove the main result related to the convergence of the multi-factor
approximation scheme for the Riccati-Volterra equations.

2 THEMODEL

We study a stochastic volatility model where the spot variance 𝜎2 = (𝜎2𝑡 )𝑡≥0 is a predictable pro-
cess, with trajectories in 𝐿2loc(ℝ+), defined on a stochastic basis (Ω, , ℚ, 𝔽 = (𝑡)𝑡≥0). We assume
that the filtration 𝔽 satisfies the usual conditions and that 0 is the trivial 𝜎− algebra.
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We consider, throughout our study, a kernel𝐾 that satisfies the next requirement, see Abi Jaber
(2021), Abi Jaber et al. (2021), Abi Jaber et al. (2019), Bondi et al. (2024).

Hypothesis 2.1. The kernel𝐾 ∈ 𝐿2loc(ℝ+) is nonnegative, nonincreasing, not identically zero and
continuously differentiable on (0,∞). Furthermore, its resolvent of the first kind 𝐿 is nonnegative
and nonincreasing, that is, 𝑠 ↦ 𝐿([𝑠, 𝑠 + 𝑡]) is nonincreasing for every 𝑡 ≥ 0.

We recall that, given a kernel 𝐾 ∈ 𝐿1loc(ℝ+;ℝ
𝑑×𝑑), an ℝ𝑑×𝑑− valued measure 𝐿 is called its (mea-

sure) resolvent of the first kind if 𝐿 ∗ 𝐾 = 𝐾 ∗ 𝐿 = 𝐼, where 𝐼 ∈ ℝ𝑑×𝑑 is the identity matrix. The
resolvent of the first kind does not always exist, but if it does then it is unique, see (Gripenberg
et al., 1990, Theorem 5.2, Chapter 5). Under Hypothesis 2.1, the existence of the resolvent of the
first kind is ensured by (Gripenberg et al., 1990, Theorem 5.5, Chapter 5).
Let 𝑔0 be a function representing the initial spot variance curve. A parametric form of 𝑔0 will

be specified for the application of the model (see Section 6). At this point, however, we only make
the following assumption.

Hypothesis 2.2. 𝑔0 is continuous and nondecreasing, with 𝑔0(0) ≥ 0.

Fix 𝑏 ∈ ℝ, 𝑐 > 0, an 𝔽− Brownianmotion𝑊2 = (𝑊2,𝑡)𝑡≥0 and a nonnegative measure 𝜈 onℝ+

such that 𝜈({0}) = 0 and that ∫
ℝ+

|𝑧|2𝜈(d𝑧) < ∞.We assume that the spot variance 𝜎2 is aℚ⊗ d𝑡−

a.e. nonnegative predictable process satisfying

𝜎2 = 𝑔0 + 𝐾 ∗ d𝑍, ℚ ⊗ d𝑡 − a.e., (1)

where𝑍 is the following semimartingale having jumpmeasure 𝜇(d𝑡, d𝑧) and compensator 𝜎2𝑡 d𝑡 ⊗
𝜈(d𝑧):

d𝑍𝑡 = 𝑏 𝜎2𝑡 d𝑡 +
√
𝑐 𝜎𝑡 d𝑊2,𝑡 + ∫

ℝ+

𝑧
(
𝜇(d𝑡, d𝑧) − 𝜎2𝑡 d𝑡 ⊗ 𝜈(d𝑧)

)
, 𝑍0 = 0.

Therefore, the instantaneous variance 𝜎2 satisfies a stochastic affine Volterra equation of con-
volution type with jumps. From now on, we denote by �̃�(d𝑡, d𝑧) = 𝜇(d𝑡, d𝑧) − 𝜎2𝑡 d𝑡 ⊗ 𝜈(d𝑧) the
compensated jump measure of 𝑍. Since the intensity of the jumps of 𝜎2 is proportional to 𝜎2
itself, the spot variance is a Hawkes-type process, which is coherent with other models that
incorporate endogeneity of financial markets such as Bernis et al. (2021), Callegaro et al. (2022),
El Euch and Rosenbaum (2019), Gonzato and Sgarra (2021), Jiao et al. (2017). In the sequel,
we denote by 𝑍 = (𝑍𝑡)𝑡≥0 the process d𝑍𝑡 =

√
𝑐 𝜎𝑡 d𝑊2,𝑡 + ∫

ℝ+
𝑧 �̃�(d𝑡, d𝑧), 𝑡 ≥ 0, with starting

condition 𝑍0 = 0. Notice that 𝑍 is a square-integrable martingale by (Bondi et al., 2024, Lemma 1).
According to (Bondi et al., 2024, Appendix A)

𝜎2 = 𝑔0 − 𝑅−𝑏𝐾 ∗ 𝑔0 + 𝐸𝑏,𝐾 ∗ d𝑍, ℚ ⊗ d𝑡 − a.e., (2)

where𝑅−𝑏𝐾 is the resolvent of the second kind of−𝑏𝐾 and𝐸𝑏,𝐾 is the canonical resolvent of𝐾with
parameter 𝑏. We recall that the resolvent of the second kind 𝑅𝐾 for a kernel 𝐾 ∈ 𝐿1loc(ℝ+) is the
unique solution𝑅𝐾 ∈ 𝐿1loc(ℝ+) of the two equations𝐾 ∗ 𝑅𝐾 = 𝑅𝐾 ∗ 𝐾 = 𝐾 − 𝑅𝐾 , see (Gripenberg
et al., 1990, Theorem 3.1, Chapter 2) and the subsequent definition. The canonical resolvent 𝐸𝜆,𝐾
of 𝐾 with parameter 𝜆 is defined by 𝐸𝜆,𝐾 = −𝜆−1𝑅−𝜆𝐾 for 𝜆 ≠ 0, whereas 𝐸0,𝐾 = 𝐾.
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Remark 2.3. If we assume that 𝐾 and the shifted kernels 𝐾(⋅ + 1∕𝑛), 𝑛 ∈ ℕ, satisfy Hypothesis
2.1, then under Hypothesis 2.2 the (weak) existence of the spot variance process 𝜎2, satisfying (1),
is ensured by (Abi Jaber, 2021, Theorem 2.13) and (Bondi et al., 2024, Lemma 9). Assuming weak
existence, weak uniqueness is established in (Bondi et al., 2024, Corollary 12) under Hypothesis
2.1.We refer to Abi Jaber et al. (2021) and Bondi et al. (2024) formore information about stochastic
Volterra equations and stochastic convolution for processes with jumps.

A useful tool for the development of the theory is the adjusted forward process, which we now
define. For every 𝑡 ≥ 0, it is denoted by (𝑔𝑡(𝑠))𝑠>𝑡 and it is a jointly measurable process on Ω×

(𝑡,∞) such that

𝑔𝑡(𝑠) = 𝑔0(𝑠) + ∫
𝑡

0

𝐾(𝑠 − 𝑟)d𝑍𝑟, ℚ − a.s., 𝑠 > 𝑡. (3)

Thanks to (Meyer, 1966, Theorem 46) and the fact that 𝔽 satisfies the usual conditions, we can
consider 𝑔𝑡(⋅) to be 𝑡 ⊗ (𝑡,∞)−measurable.
Analogous arguments provide a version of the conditional expectation process 𝔼[𝜎2|𝑡] =

(𝔼[𝜎2𝑠 |𝑡])𝑠>𝑡 which is 𝑡 ⊗ (𝑡,∞)−measurable. In particular, from (2),

𝔼
[
𝜎2𝑠

|||𝑡] = 𝑔0(𝑠) − (𝑅−𝑏𝐾 ∗ 𝑔0)(𝑠) + ∫
𝑡

0

𝐸𝑏,𝐾(𝑠 − 𝑟)d𝑍𝑟, ℚ − a.s., 𝑠 > 𝑡. (4)

We now prescribe the dynamics of the log returns process 𝑋 = (𝑋𝑡)𝑡≥0 as follows:

d𝑋𝑡 = −

(
1

2
+ ∫

ℝ+

(
𝑒−Λ𝑧 − 1 + Λ𝑧

)
𝜈(d𝑧)

)
𝜎2𝑡 d𝑡 + 𝜎𝑡

(√
1 − 𝜌2 d𝑊1,𝑡 + 𝜌 d𝑊2,𝑡

)
− Λ∫

ℝ+

𝑧 �̃�(d𝑡, d𝑧), 𝑋0 = 0, (5)

where 𝜌 ∈ [−1, 1] is a correlation parameter, 𝑊1 = (𝑊1,𝑡)𝑡≥0 is an 𝔽− Brownian motion inde-
pendent from 𝑊2 and Λ ≥ 0 is a leverage parameter forcing common jumps for volatility and
underlying with opposite signs. This is coherent with empirical findings in Todorov and Tauchen
(2011), stylized features studied in Cont (2001), and the financial/econometric literature with
jumps, for example, Barndorff-Nielsen and Shephard (2001a), Bates (1996), Barndorff-Nielsen and
Shephard (2001b), Bernis et al. (2021), Cont and Kokholm (2013), Curato and Sanfelici (2015), Raf-
faelli et al. (2022), Sepp (2008). We have assumed, for the sake of readability and without loss of
generality, that interest rates and dividends are zero. The price process of the underlying asset
will be 𝑆 = (𝑆𝑡)𝑡≥0 = (𝑆0𝑒

𝑋𝑡 )𝑡≥0, where 𝑆0 > 0 represents the initial price. An application of Itô’s
formula shows that 𝑆 is a local martingale. Indeed,

d𝑆𝑡
𝑆𝑡−

= −

(
1

2
+ ∫

ℝ+

(
𝑒−Λ𝑧 − 1 + Λ𝑧

)
𝜈(d𝑧)

)
𝜎2𝑡 d𝑡 + 𝜎𝑡

(√
1 − 𝜌2 d𝑊1,𝑡 + 𝜌 d𝑊2,𝑡

)
− Λ∫

ℝ+

𝑧 �̃�(d𝑡, d𝑧) +
1

2
𝜎2𝑡 d𝑡 + ∫

ℝ+

(
𝑒−Λ𝑧 − 1 + Λ𝑧

)
𝜇(d𝑡, d𝑧)
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= 𝜎𝑡

(√
1 − 𝜌2 d𝑊1,𝑡 + 𝜌 d𝑊2,𝑡

)
+ ∫

ℝ+

(
𝑒−Λ𝑧 − 1

)
�̃�(d𝑡, d𝑧) =∶ d𝑁𝑡,

where 𝑁 = (𝑁𝑡)𝑡≥0 is a local martingale with 𝑁0 = 0. In particular, since 𝑆 starts at 𝑆0, it follows
that 𝑆 = 𝑆0(𝑁), where  denotes the Doléans-Dade exponential. In the next section, see Corol-
lary 3.4, we will improve on this result by showing that, for every 𝑇 > 0, the restriction of 𝑆 to
[0, 𝑇] is a true martingale.

3 THE FOURIER-LAPLACE TRANSFORMOF THE LOG RETURNS

In this section we study, for a fixed 𝑇 ≥ 0, the conditional Fourier-Laplace transform of 𝑋𝑇 ,
𝔼[𝑒𝑤𝑋𝑇 |𝑡], 𝑡 ∈ [0, 𝑇]. Here 𝑤 ∈ ℂ is subject to suitable conditions that will be specified in the
sequel. In particular, wewant to find a formula that allow us to compute the prices of options writ-
ten on the underlying asset using Fourier-inversion techniques (Duffie et al., 2003; Duffie et al.,
2000; Filipović, 2001; Grasselli, 2016). We will adopt the following notation: for 𝑧 ∈ ℂ we denote
by Re 𝑧 and Im 𝑧 the real and imaginary parts of 𝑧, respectively. We let ℂ+ [resp., ℂ− ] be the set
of complex numbers with nonnegative [resp., nonpositive] real part.
Let us define the mappingR ∶ ℂ+ × ℂ− → ℂ by

R(𝑢, 𝑣) =
1

2

(
𝑢2 − 𝑢

)
+

(
𝑏 + 𝜌

√
𝑐 𝑢

)
𝑣 +

𝑐

2
𝑣2 + ∫

ℝ+

[
𝑒(𝑣−Λ𝑢)𝑧 − 𝑢

(
𝑒−Λ𝑧 − 1

)
− 1 − 𝑣𝑧

]
𝜈(d𝑧),

(6)
for every (𝑢, 𝑣) ∈ ℂ+ × ℂ−. For the development of the theory we need the following result about
deterministic Riccati-Volterra equations, whose proof is postponed to Appendix A.

Theorem 3.1. Suppose that 𝐾 satisfies Hypothesis 2.1 and 𝑤 ∈ ℂ is such that Re𝑤 ∈ [0, 1].

(i) There exists a unique continuous solution 𝜓𝑤 ∶ ℝ+ → ℂ− of the Riccati-Volterra equation

𝜓𝑤(𝑡) = ∫
𝑡

0

𝐾(𝑡 − 𝑠)R(𝑤, 𝜓𝑤(𝑠))d𝑠 = (𝐾 ∗ R(𝑤, 𝜓𝑤(⋅)))(𝑡), 𝑡 ≥ 0. (7)

In particular, 𝜓Re𝑤 isℝ−− valued.
(ii) The following inequalities hold:

Re𝜓𝑤(𝑡) ≤ 𝜓Re𝑤(𝑡) ≤ 0, 𝑡 ≥ 0. (8)

We also need the next preparatory lemma, which can be proven similarly to (Abi Jaber, 2021,
Lemma 6.1).

Lemma 3.2. Let 𝑓1, 𝑓2, 𝑓3 ∶ [0, 𝑇] → ℝ be bounded measurable functions such that 𝑓3 ≤ 0 in
[0, 𝑇]. Then, the Doléans-Dade exponential


(
∫

𝑡

0

𝑓1(𝑠)𝜎𝑠 d𝑊1,𝑠 + ∫
𝑡

0

𝑓2(𝑠)𝜎𝑠 d𝑊2,𝑠 + ∫
𝑡

0
∫
ℝ+

(
𝑒𝑓3(𝑠)𝑧 − 1

)
�̃�(d𝑠, d𝑧)

)
, 𝑡 ∈ [0, 𝑇]
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is a martingale.

We are now ready to state the main result of this section. We introduce for every 𝜀 ∈ ℝ the shift
operator Δ𝜀, which, given 𝐼 ⊂ ℝ and a function 𝑓 ∶ 𝐼 → ℂ, assigns the function Δ𝜀𝑓 ∶ 𝐼 − 𝜀 → ℂ

defined by Δ𝜀𝑓(𝑡) = 𝑓(𝑡 + 𝜀), 𝑡 ∈ 𝐼 − 𝜀.

Theorem 3.3. Suppose that𝐾 satisfies Hypothesis 2.1 and that the resolvent of the first kind 𝐿 is the
sum of a locally integrable function and a point mass at 0. Moreover, suppose that the total variation
bound

sup
𝜀∈(0,𝑇]

‖Δ𝜀𝐾 ∗ 𝐿‖
TV

([
0,𝑇

]) < ∞

holds for all 𝑇 > 0. Then, under Hypothesis 2.2, for every 𝑤 ∈ ℂ such that Re𝑤 ∈ [0, 1],

𝔼
[
exp {𝑤𝑋𝑇}

|||𝑡] = exp
{
𝑉𝑡(𝑤, 𝑇)

}
, ℚ − a.s., 𝑡 ∈ [0, 𝑇], (9)

where 𝑉𝑡(𝑤, 𝑇) = 𝑤𝑋𝑡 + ∫ 𝑇

𝑡
R(𝑤, 𝜓𝑤(𝑇 − 𝑠))𝑔𝑡(𝑠)d𝑠, 𝑡 ∈ [0, 𝑇].

Proof. Let 𝑤 ∈ ℂ be such that Re𝑤 ∈ [0, 1]. Define the càdlàg, adapted, ℂ− valued semimartin-
gale (𝑉𝑡(𝑤, 𝑇))𝑡∈[0,𝑇] by

𝑉𝑡(𝑤, 𝑇) = 𝑉0(𝑤, 𝑇) + 𝑤𝑋𝑡 + ∫
𝑡

0

𝜓𝑤(𝑇 − 𝑠)d𝑍𝑠

− ∫
𝑡

0

(
1

2

(
𝑤2 − 𝑤

)
+ 𝜌

√
𝑐 𝑤 𝜓𝑤(𝑇 − 𝑠) +

𝑐

2
𝜓𝑤(𝑇 − 𝑠)

2

+∫
ℝ+

(
𝑒(−Λ𝑤+𝜓𝑤(𝑇−𝑠))𝑧 − 𝑤

(
𝑒−Λ𝑧 − 1

)
− 1 − 𝜓𝑤(𝑇 − 𝑠)𝑧

)
𝜈(d𝑧)

)
𝜎2𝑠 d𝑠,

(10)

𝑉0(𝑤, 𝑇) = ∫
𝑇

0

R(𝑤, 𝜓𝑤(𝑇 − 𝑠))𝑔0(𝑠)d𝑠. (11)

The same arguments as in the proof of (Bondi et al., 2024, Theorem 5), which essentially rely on
the stochastic Fubini’s theorem (see, e.g., (Protter, 2005, Theorem 65, Chapter IV)), allow us to
prove that

𝑉𝑡(𝑤, 𝑇) = 𝑉𝑡(𝑤, 𝑇), ℚ − a.s., 𝑡 ∈ [0, 𝑇]. (12)

We now define 𝐻(𝑤, 𝑇) = (𝐻𝑡(𝑤, 𝑇))𝑡∈[0,𝑇] = (exp{𝑉𝑡(𝑤, 𝑇)})𝑡∈[0,𝑇]. By Itô’s formula and the
dynamics in (5) and (10) we have, omitting (𝑤, 𝑇) for sake of readability,

d𝐻𝑡

𝐻𝑡−
=

[
𝑤 d𝑋𝑡 −

(
𝑐

2
𝜓𝑤(𝑇 − 𝑡)

2
+ ∫

ℝ+

(
𝑒(−Λ𝑤+𝜓𝑤(𝑇−𝑡))𝑧 − 1 − 𝑤

(
𝑒−Λ𝑧 − 1

)
− 𝜓𝑤(𝑇 − 𝑡)𝑧

)
𝜈(d𝑧)

+
1

2

(
𝑤2 − 𝑤

)
+ 𝜌

√
𝑐 𝑤 𝜓𝑤(𝑇 − 𝑡)

)
𝜎2𝑡 d𝑡 + 𝜓𝑤(𝑇 − 𝑡)d𝑍𝑡

]
+
1

2

(
𝑐 𝜓𝑤(𝑇 − 𝑡)

2
+ 𝑤2

)
𝜎2𝑡 d𝑡
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+ 𝜌
√
𝑐 𝑤 𝜓𝑤(𝑇 − 𝑡)𝜎2𝑡 d𝑡 + ∫

ℝ+

(
𝑒(−Λ𝑤+𝜓𝑤(𝑇−𝑡))𝑧 − 1 − (−Λ𝑤 + 𝜓𝑤(𝑇 − 𝑡))𝑧

)
𝜇(d𝑡, d𝑧)

=

[
𝜎𝑡

(
𝑤
√
1 − 𝜌2 d𝑊1,𝑡 +

(
𝑤𝜌 +

√
𝑐 𝜓𝑤(𝑇 − 𝑡)

)
d𝑊2,𝑡

)
+ ∫

ℝ+

(
𝑒(−Λ𝑤+𝜓𝑤(𝑇−𝑡))𝑧 − 1

)
�̃�(d𝑡, d𝑧)

]
,

with𝐻0 = exp(𝑉0). We define 𝑁(𝑤, 𝑇) = (𝑁𝑡(𝑤, 𝑇))𝑡∈[0,𝑇] by 𝑁0(𝑤, 𝑇) = 0 and

d𝑁𝑡(𝑤, 𝑇) = 𝜎𝑡

(
𝑤
√
1 − 𝜌2 d𝑊1,𝑡 +

(
𝑤𝜌 +

√
𝑐 𝜓𝑤(𝑇 − 𝑡)

)
d𝑊2,𝑡

)
+∫

ℝ+

(
𝑒(−Λ𝑤+𝜓𝑤(𝑇−𝑡))𝑧 − 1

)
�̃�(d𝑡, d𝑧).

Then 𝑁(𝑤, 𝑇) is a local martingale and the previous computations show that, omitting again
(𝑤, 𝑇), 𝐻 = exp{𝑉0}(𝑁) up to evanescence, where  denotes the Doléans-Dade exponential.
Therefore 𝐻(𝑤, 𝑇) is a local martingale. If it is indeed a true martingale, then (9) directly follows
from (12) noting also that 𝑉𝑇(𝑤, 𝑇) = 𝑤𝑋𝑇 .
In order to argue the martingale property of 𝐻(𝑤, 𝑇), first we observe that by Lemma 3.2 the

real-valued process𝐻(Re𝑤, 𝑇) = (𝐻𝑡(Re𝑤, 𝑇))𝑡∈[0,𝑇] = (exp{𝑉𝑡(Re𝑤, 𝑇)})𝑡∈[0,𝑇] is a true martin-
gale. Secondly, we invoke (Bondi et al., 2024, Corollary 8) to obtain the following alternative
expression for 𝑉(𝑤, 𝑇) (an analogous one holds for 𝑉(Re𝑤, 𝑇))

𝑉𝑡(𝑤, 𝑇) = 𝑤𝑋𝑡 + ∫
𝑇−𝑡

0

R(𝑤, 𝜓𝑤(𝑠))𝑔0(𝑇 − 𝑠)d𝑠 + 𝜓𝑤(𝑇 − 𝑡)𝐿({0})
(
𝜎2 − 𝑔0

)
(𝑡)

+
(
dΠ𝑇−𝑡 ∗

(
𝜎2 − 𝑔0

))
(𝑡), for a.e. 𝑡 ∈ (0, 𝑇), ℚ − a.s., (13)

where for every 𝜀 > 0, Π𝜀(𝑡) = ∫ 𝜀

0
R(𝑤, 𝜓𝑤(𝑠))(Δ𝜀−𝑠𝐾 ∗ 𝐿)(𝑡)d𝑠, 𝑡 ≥ 0, is a locally absolutely con-

tinuous function. The application of this result is legitimate because the procedure carried out in
Bondi et al. (2024) to infer (13) only depends on (1), (7) and the boundedness on compact intervals
ofℝ+ ofR(𝑤, 𝜓𝑤(⋅)), and does not rely on the expression ofR. A similar argument together with
(8) and Hypothesis 2.2 allows us to parallel the comparison method in the proof of (Bondi et al.,
2024, Theorem 11) to conclude that there is a constant 𝐶 > 0 such that

|𝐻𝑡(𝑤, 𝑇)| = |exp {𝑉𝑡(𝑤, 𝑇)}| = exp {Re𝑉𝑡(𝑤, 𝑇)} ≤ 𝐶 exp {𝑉𝑡(Re𝑤, 𝑇)} = 𝐶𝐻𝑡(Re𝑤, 𝑇),

for 𝑡 ∈ [0, 𝑇], ℚ− a.s. At this point it is sufficient to invoke (Jarrow, 2018, Lemma 1.4) to claim
that𝐻(𝑤, 𝑇) is a true martingale, hence the proof is complete. □

From the previous theorem we deduce the martingale property of our price process 𝑆 with a
direct approach (it can also be obtained by Lemma 3.2).

Corollary 3.4. Under the hypotheses of Theorem3.3, the price process 𝑆 = (𝑆𝑡)𝑡∈[0,𝑇] is amartingale.

Proof. The computations at the end of Section 2 show that the stock price 𝑆 is a nonnegative local
martingale, hence it is a supermartingale. In order for it to be a martingale, it is sufficient to show
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that 𝔼[𝑆𝑇] = 𝑆0. By (9) in Theorem 3.3 with 𝑤 = 1 we have

𝔼[𝑆𝑇] = 𝑆0 exp

{
∫

𝑇

0

R(1, 𝜓1(𝑇 − 𝑠))𝑔0(𝑠)d𝑠

}
.

From (6)–(7), we observe that 𝜓1 ≡ 0 in ℝ+. This implies that R(1, 𝜓1(⋅)) = 0 in ℝ+, which
concludes the proof. □

Equation (9) in Theorem 3.3 gives a semi-explicit expression to compute the Fourier-Laplace
transform Ψ𝑋𝑇 of 𝑋𝑇 in a suitable region of ℂ, namely

Ψ𝑋𝑇(𝑤) = exp

{
∫

𝑇

0

R(𝑤, 𝜓𝑤(𝑇 − 𝑠))𝑔0(𝑠) d𝑠

}
, 𝑤 ∈ ℂ such that Re𝑤 ∈ [0, 1]. (14)

As shown in the following proposition, whose proof is in Appendix B, we can use Ψ𝑋𝑇 to price
options with maturity 𝑇 on the underlying asset 𝑆 via Fourier-inversion techniques.

Proposition 3.5. Fix a log strike𝑘 > 0. Then, under the hypotheses of Theorem3.3, the price𝐶𝑆(𝑘, 𝑇)
of a call option on the underlying asset 𝑆 with log strike 𝑘 and maturity 𝑇 is

𝐶𝑆(𝑘, 𝑇) = 𝑆0 −
1

𝜋

√
𝑆0𝑒𝑘 ∫

ℝ+

Re
[
𝑒𝑖𝜆(log(𝑆0)−𝑘)Ψ𝑋𝑇

(
1

2
+ 𝑖𝜆

)]
1

1

4
+ 𝜆2

d𝜆, (15)

and the price 𝑃𝑆(𝑘, 𝑇) of a put option with the same log strike, maturity and underlying is

𝑃𝑆(𝑘, 𝑇) = 𝑒𝑘 −
1

𝜋

√
𝑆0𝑒𝑘 ∫

ℝ+

Re
[
𝑒𝑖𝜆(log(𝑆0)−𝑘)Ψ𝑋𝑇

(
1

2
+ 𝑖𝜆

)]
1

1

4
+ 𝜆2

d𝜆. (16)

Remark 3.6. The expression in (15) coincides with (Lewis, 2001, Formula (3.11)), but we have
to independently prove it (see Appendix B). Indeed, in Lewis (2001) the author obtains (15)
starting from the inversion of the generalized Fourier transform of the payoff function 𝑤(𝑥) =
(𝑒𝑥 − 𝑒𝑘)+, 𝑥 ∈ ℝ, of a call option with log strike 𝑘 (here 𝑥 represents the log price). Namely, for
𝑥 ∈ ℝ,

𝑤(𝑥) = −
1

2𝜋 ∫
𝑖𝑧𝑖+∞

𝑖𝑧𝑖−∞

𝑒𝑘(𝑖𝑧+1)

𝑧2 − 𝑖𝑧
𝑒−𝑖𝑧𝑥d𝑧, 𝑧𝑖 > 1.

If we were to follow the same approach here, then we would find a problem: we only have proved
thatΨ𝑋𝑇 is defined for complex numbers with real part in [0,1]. Therefore, in the previous expres-
sion, we would need 𝑧𝑖 ∈ [0, 1], which is a contradiction. This setback cannot be immediately
fixed by considering put options and then applying the put-call parity formula, because again the
intersection between the complex strip (𝑧𝑖 < 0), where the Fourier transform for the payoff func-
tion is defined, and the strip where Ψ𝑋𝑇(−𝑖 ⋅) is available is empty. We refer to (Schmelzle, 2010,
Section 4) for a survey of pricing based on Fourier-inversion techniques.

Choosing a purely imaginary number 𝑤 in Equation (14), that is, 𝑤 = 𝑖𝑡, 𝑡 ∈ ℝ, we obtain a
semi-explicit formula for the characteristic function of 𝑋𝑇 . As a result, we can approximate the
price of an option on the underlying asset 𝑆 with maturity 𝑇 by the COS method in Fang and
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Oosterlee (2009). This approach is more efficient than the exact formulas (15)–(16). In fact, in
Section 6 we use the COS method to calibrate our model to market data. Its advantage relies on
the reduced number of evaluations required for Ψ𝑋𝑇 , leading to fewer numerical approximations
of the Riccati-Volterra equation (7). However, given the sensitivity of the COSmethodwith respect
to the truncation bounds commonly denoted by 𝑎 and 𝑏, we still need (15)–(16) as a benchmark.
We refer to Section 6 for a more precise discussion on the topic.

4 THE FOURIER-LAPLACE TRANSFORMOF VIX𝟐

In this section the underlying asset 𝑆 represents the SPX index. Then, according to the CBOE VIX
white paper and Demeterfi et al. (1999), the theoretical value of VIX = (VIX𝑇)𝑇≥0 is

VIX𝑇 =

√(
−
2

𝛿
𝔼
[
𝑋𝑇+𝛿 − 𝑋𝑇||𝑇])+

× 100, 𝑇 ≥ 0. (17)

Here 𝛿 = 1

12
and represents 30 days, the time to expiration of the log contracts involved in the com-

putation of the index. Note that in (17), the positive part has been inserted to guarantee the good
definition of the randomvariable VIX𝑇 in thewhole spaceΩ, however the radicand is nonnegative
ℚ− a.s., as we are about to show.
We first derive, in the following theorem, an expression for 𝔼[𝑋𝑇+𝛿 − 𝑋𝑇|𝑇], 𝑇 ≥ 0, in terms

of the adjusted forward process at time 𝑇, 𝑔𝑇(⋅).

Theorem 4.1. The log contract satisfies an infinite dimensional affine relation with respect to the
adjusted forward process. More specifically,

𝔼
[
𝑋𝑇+𝛿 − 𝑋𝑇||𝑇] = 𝑐1 ∫

𝑇+𝛿

𝑇

(
1 + 𝑏

(
𝐸𝑏,𝐾 ∗ 1

)
(𝑇 + 𝛿 − 𝑠)

)
𝑔𝑇(𝑠)d𝑠 ≤ 0, ℚ − a.s., (18)

where 𝑐1 = −(
1

2
+ ∫

ℝ+
(𝑒−Λ𝑧 − 1 + Λ𝑧)𝜈(d𝑧)).

Proof. By (5) and themartingale property of the localmartingale part of the expression (see (Bondi
et al., 2024, Lemma 1)), we have

𝔼
[
𝑋𝑇+𝛿 − 𝑋𝑇||𝑇] = 𝑐1 ∫

𝑇+𝛿

𝑇

𝔼
[
𝜎2𝑠 ||𝑇]d𝑠, ℚ − a.s.

Recalling that 𝜎2 ≥ 0, ℚ ⊗ d𝑡− a.e., we infer that 𝔼[𝜎2𝑠 |𝑇] ≥ 0 for a.e. 𝑠 > 𝑇, ℚ− a.s., hence the
value of a log contract at time 𝑇 is nonpositive ℚ− a.s.
By (2), (4), the stochastic Fubini’s theorem – whose application is guaranteed by (Bondi et al.,

2024, Lemma 1) – and a suitable change of variables, we infer that,ℚ− a.s.

𝑐−11 𝔼
[
𝑋𝑇+𝛿 − 𝑋𝑇||𝑇] = ∫

𝑇+𝛿

0

𝑓0(𝑠)d𝑠 − ∫
𝑇

0

𝜎2𝑠 d𝑠 + ∫
𝑇+𝛿

0

(
∫

𝑇

0

1{𝑟≤𝑠}𝐸𝑏,𝐾(𝑠 − 𝑟)d𝑍𝑟

)
d𝑠

= ∫
𝑇+𝛿

0

𝑓0(𝑠)d𝑠 − ∫
𝑇

0

𝜎2𝑠 d𝑠 + ∫
𝑇

0

(
𝐸𝑏,𝐾 ∗ 1

)
(𝑇 + 𝛿 − 𝑟)d𝑍𝑟
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= ∫
𝑇+𝛿

0

𝑓0(𝑠)d𝑠 − ∫
𝑇

0

(
1 + 𝑏

(
𝐸𝑏,𝐾 ∗ 1

))
(𝑇 + 𝛿 − 𝑠)𝜎2𝑠 d𝑠 + ∫

𝑇

0

(
𝐸𝑏,𝐾 ∗ 1

)
(𝑇 + 𝛿 − 𝑟)d𝑍𝑟,

(19)

where 𝑓0 = 𝑔0 − 𝑅−𝑏𝐾 ∗ 𝑔0. Notice that 𝐸𝑏,𝐾 ∗ 1 is the unique, continuous (nonnegative) solution
of the linear Volterra equation 𝜒 = 𝐾 ∗ (1 + 𝑏𝜒). Then, another application of stochastic Fubini’s
theorem yields,ℚ− a.s.,

∫
𝑇

0

(
𝐸𝑏,𝐾 ∗ 1

)
(𝑇 + 𝛿 − 𝑟)d𝑍𝑟 = ∫

𝑇

0

(
∫

𝑇+𝛿

𝑟

𝐾(𝑠 − 𝑟)
(
1 + 𝑏

(
𝐸𝑏,𝐾 ∗ 1

)
(𝑇 + 𝛿 − 𝑠)

)
d𝑠

)
d𝑍𝑟

= ∫
𝑇+𝛿

0

(
1 + 𝑏

(
𝐸𝑏,𝐾 ∗ 1

)
(𝑇 + 𝛿 − 𝑠)

)(
∫

𝑇

0

1{𝑟≤𝑠}𝐾(𝑠 − 𝑟)d𝑍𝑟

)
d𝑠.

To conclude, we observe that by (Gripenberg et al., 1990, Theorem 2.2 (viii), Chapter 2)

−((𝑅−𝑏𝐾 ∗ 𝑔0) ∗ 1)(𝑇 + 𝛿) = 𝑏
((
𝐸𝑏,𝐾 ∗ 1

)
∗ 𝑔0

)
(𝑇 + 𝛿),

and plugging the previous two equalities in (19), together with (1), (3), we obtain the relation in
(18). □

We deduce the following corollary showing an affine relation between the square of the VIX
index and the adjusted forward process.

Corollary 4.2. The square ofVIX satisfies an infinite dimensional affine relation with respect to the
adjusted forward process. More specifically

VIX2𝑇 = −104
2

𝛿
𝔼
[
𝑋𝑇+𝛿 − 𝑋𝑇||𝑇], ℚ − a.s.

= −104
2

𝛿
𝑐1 ∫

𝑇+𝛿

𝑇

(
1 + 𝑏

(
𝐸𝑏,𝐾 ∗ 1

)
(𝑇 + 𝛿 − 𝑠)

)
𝑔𝑇(𝑠)d𝑠, ℚ − a.s.,

(20)

where 𝑐1 = −(
1

2
+ ∫

ℝ+
(𝑒−Λ𝑧 − 1 + Λ𝑧)𝜈(d𝑧)).

Remark 4.3. Our framework also allows us to obtain an explicit infinite dimensional affine relation
between the variance swaps and the adjusted forward process. Specifically, the variance swap rate
is

1

𝛿
𝔼
[
[𝑋, 𝑋]𝑇+𝛿 − [𝑋,𝑋]𝑇

||𝑇] = 𝑐2
𝛿 ∫

𝑇+𝛿

𝑇

(
1 + 𝑏

(
𝐸𝑏,𝐾 ∗ 1

)
(𝑇 + 𝛿 − 𝑠)

)
𝑔𝑇(𝑠)d𝑠, ℚ − a.s., (21)

where 𝑐2 = 1 + Λ2 ∫
ℝ+

|𝑧|2𝜈(d𝑧). Note that for Λ = 0 we have 𝑐2 = −2𝑐1, hence in this case log
contracts and variance swaps coincide up to the factor−2∕𝛿 (see (18)–(21)). Therefore, when there
are no jumps in the dynamics of the underlying, by (20) we recover the fact that VIX2 is a variance
swap. Moreover, observe that the relation in (21) is an extension of (Kallsen et al., 2011, Lemma
4.4) in the classical affine setting. We refer to Cont and Kokholm (2013), Demeterfi et al. (1999),
Mancino et al. (2020) formore details regarding the distinction between variance swaps andVIX2.
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We are now interested in finding the conditional Fourier-Laplace transform of VIX2𝑇 . Before
addressing this question, we need some technical intermediate steps. We first recall the following
functional space as defined in Abi Jaber and El Euch (2019a).

𝐾 = {𝑔 ∶ ℝ+ → ℝ continuous: 𝑔(0) ≥ 0 and Δ𝜀𝑔 − (Δ𝜀𝐾 ∗ 𝐿)(0)𝑔 − d(Δ𝜀𝐾 ∗ 𝐿) ∗ 𝑔 ≥ 0, 𝜀 ≥ 0}.

(22)

Lemma 4.4. Suppose that 𝐾 satisfies Hypothesis 2.1. Define the function ℎ ∶ ℝ+ → ℝ by

ℎ(𝑡) = −104
2

𝛿
𝑐1
[
1 + 𝑏

(
𝐸𝑏,𝐾 ∗ 1

)
(𝛿 − 𝑡)

]
1{𝑡≤𝛿}, 𝑡 ≥ 0.

Then ℎ is a continuous nonnegative function on [0, 𝛿) and 𝑡 ↦ ∫
ℝ+

ℎ(𝑠)𝐾(𝑠 + 𝑡)d𝑠 belongs to 𝐾 .
Proof. The first step is to show that 1 + 𝑏(𝐸𝑏,𝐾 ∗ 1) ≥ 0 in ℝ+, which implies that ℎ is also non-
negative. This can be deduced from the fact that this function is the unique, continuous solution
in ℝ+ of the Volterra equation 𝜒 = 1 + 𝑏𝐾 ∗ 𝜒, which is nonnegative by (Abi Jaber and El Euch,
2019b, Theorem C.1). Secondly, ℎ has compact support, and under Hypothesis 2.1 for every 𝜀 ≥ 0

the function Δ𝜀𝐾 ∗ 𝐿 is right-continuous nondecreasing in ℝ+ and (see the proof of (Abi Jaber
et al., 2019, Lemma 2.6))

Δ𝜀𝐾 = (Δ𝜀𝐾 ∗ 𝐿)(0)𝐾 + d(Δ𝜀𝐾 ∗ 𝐿) ∗ 𝐾, d𝑡 − a.e. in ℝ+.

As a consequence, for every 𝑡 ≥ 0

Δ𝜀𝐾(𝑠 + 𝑡) = (Δ𝜀𝐾 ∗ 𝐿)(0)𝐾(𝑠 + 𝑡) + (d(Δ𝜀𝐾 ∗ 𝐿) ∗ 𝐾)(𝑠 + 𝑡)

≥ (Δ𝜀𝐾 ∗ 𝐿)(0)𝐾(𝑠 + 𝑡) + ∫
𝑡

0

𝐾(𝑠 + 𝑡 − 𝑢)d(Δ𝜀𝐾 ∗ 𝐿)(𝑢), for a.e. 𝑠 ∈ [0, 𝛿].

This implies, by Tonelli’s theorem, that 𝑡 ↦ ∫
ℝ+

ℎ(𝑠)𝐾(𝑠 + 𝑡)d𝑠 belongs to 𝐾 . □

Wenowdefine, for every𝑤 ∈ ℂ−, the functionℎ𝑤(𝑡) = 𝑤 ⋅ ℎ(𝑡), 𝑡 ≥ 0, and consider theRiccati-
Volterra equation

𝜙𝑤 = ∫
∞

0

ℎ𝑤(𝑠)𝐾(𝑠 + ⋅)d𝑠 + 𝐾 ∗ (𝐺(𝜙𝑤(⋅))), (23)

where

𝐺(𝑢) = 𝑏𝑢 +
𝑐

2
𝑢2 + ∫

ℝ+

(𝑒𝑢𝑧 − 1 − 𝑢𝑧)𝜈(d𝑧), 𝑢 ∈ ℂ−. (24)

Lemma 4.5. Suppose that 𝐾 satisfies Hypothesis 2.1. For every 𝑤 ∈ ℂ−, there exists a unique
continuous solution 𝜙𝑤 ∶ ℝ+ → ℂ− to (23). Moreover,

Re𝜙𝑤(𝑡) ≤ 𝜙Re𝑤(𝑡), 𝑡 ≥ 0. (25)

Proof. Having in mind (Abi Jaber & El Euch, 2019b, Theorem C.1), the existence of a global solu-
tion of (23) can be deduced as in (Bondi et al., 2024, Theorem 10), whereas the uniqueness of such
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𝜙𝑤 is obtained with a procedure analogous to the proof of Theorem 3.1, see Step III with Λ = 0 in
AppendixA.Moreover, again by analogywith (Bondi et al., 2024, Theorem 10 (ii)), the comparison
result (25) holds. □

Before stating the theorem that provides the conditional Fourier-Laplace transform of VIX2𝑇 ,
we define

Φ𝑤(𝑡, 𝑠) = ℎ𝑤(𝑠 − 𝑡)1{𝑠≥𝑡} + 𝐺(𝜙𝑤(𝑡 − 𝑠))1{𝑠<𝑡}, 𝑡, 𝑠 ≥ 0. (26)

Theorem 4.6. Assume the same hypotheses as in Theorem 3.3. Then, for every 𝑤 ∈ ℂ−,

𝔼
[
exp

{
𝑤 ⋅ VIX2𝑇

}|||𝑡] = exp
{
𝑈𝑡(𝑤, 𝑇)

}
, ℚ − a.s., 𝑡 ∈ [0, 𝑇], (27)

where𝑈𝑡(𝑤, 𝑇) = ∫ ∞

𝑡
Φ𝑤(𝑇, 𝑠)𝑔𝑡(𝑠)d𝑠, 𝑡 ∈ [0, 𝑇].

Proof. Fix 𝑤 ∈ ℂ−. First of all, notice that by the definition of ℎ𝑤 and (20)

𝑈𝑇(𝑤, 𝑇) = ∫
∞

𝑇

ℎ𝑤(𝑠 − 𝑇)𝑔𝑇(𝑠)d𝑠 = −104
2

𝛿
𝑐1𝑤 ∫

𝑇+𝛿

𝑇

(
1 + 𝑏

(
𝐸𝑏,𝐾 ∗ 1

)
(𝑇 + 𝛿 − 𝑠)

)
𝑔𝑇(𝑠)d𝑠

= 𝑤 ⋅ VIX2𝑇, ℚ − a.s. (28)

We introduce the process

�̄�𝑇(𝑠) =

{
𝜎2𝑠 , 𝑠 ∈ [0, 𝑇],

𝑔𝑇(𝑠), 𝑠 > 𝑇.

Note that by (1) and (3), �̄�𝑇(⋅) is a joint measurable modification of 𝑔0 + ∫ 𝑇

0
1{𝑟≤⋅}𝐾(⋅ − 𝑟)d𝑍𝑟. For

every 𝑡 ∈ [0, 𝑇], the stochastic Fubini’s theorem, (23), (26), and suitable changes of variables, yield

∫
∞

0

Φ𝑤(𝑇, 𝑠)(�̄�𝑡(𝑠) − 𝑔0(𝑠))d𝑠 = ∫
∞

0

Φ𝑤(𝑇, 𝑠)

(
∫

𝑡

0

1{𝑢≤𝑠}𝐾(𝑠 − 𝑢)d𝑍𝑢

)
d𝑠

= ∫
𝑡

0

(
∫

∞

0

ℎ𝑤(𝑠)𝐾(𝑠 + 𝑇 − 𝑢)d𝑠 + ∫
𝑇−𝑢

0

𝐾(𝑠)𝐺(𝜙𝑤(𝑇 − 𝑢 − 𝑠))d𝑠

)
d𝑍𝑢

= ∫
𝑡

0

𝜙𝑤(𝑇 − 𝑢)d𝑍𝑢, ℚ − a.s. (29)

Moreover, by (26), the following equality holds:

∫
𝑡

0

Φ𝑤(𝑇, 𝑠)𝜎
2
𝑠 d𝑠 = ∫

𝑡

0

ℎ𝑤(𝑠 − 𝑇)1{𝑠≥𝑇}𝜎2𝑠 d𝑠 + ∫
𝑡

0

𝐺(𝜙𝑤(𝑇 − 𝑠))𝜎2𝑠 d𝑠

= ∫
𝑡

0

𝐺(𝜙𝑤(𝑇 − 𝑠))𝜎2𝑠 d𝑠. (30)
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Recalling the definition of 𝑈𝑡(𝑤, 𝑇), we combine (29) and (30) to write

𝑈𝑡(𝑤, 𝑇) = ∫
∞

𝑡

Φ𝑤(𝑇, 𝑠)𝑔0(𝑠)d𝑠 + ∫
∞

0

Φ𝑤(𝑇, 𝑠)(�̄�𝑡(𝑠) − 𝑔0(𝑠))d𝑠 − ∫
𝑡

0

Φ𝑤(𝑇, 𝑠)
(
𝜎2𝑠 − 𝑔0(𝑠)

)
d𝑠

= ∫
∞

0

Φ𝑤(𝑇, 𝑠)𝑔0(𝑠)d𝑠 + ∫
𝑡

0

𝜙𝑤(𝑇 − 𝑢)d𝑍𝑢 − ∫
𝑡

0

𝐺(𝜙𝑤(𝑇 − 𝑠))𝜎2𝑠 d𝑠, ℚ − a.s. (31)

In the sequel we denote by 𝑈(𝑤, 𝑇) = (𝑈𝑡(𝑤, 𝑇))𝑡∈[0,𝑇] the càdlàg process defined by the
rightmost side of (31). An application of Itô’s formula together with (24) shows that
𝐸(𝑤, 𝑇) = (exp{𝑈𝑡(𝑤, 𝑇)})𝑡∈[0,𝑇] is a local martingale, namely 𝐸(𝑤, 𝑇) = exp{∫ ∞

0
Φ𝑤(𝑇 − 𝑠)

𝑔0(𝑠)d𝑠}(�̃�(𝑤, 𝑇)), where  denotes the Doléans-Dade exponential and �̃�(𝑤, 𝑇) =

(�̃�𝑡(𝑤, 𝑇))𝑡∈[0,𝑇] is defined by

d�̃�𝑡(𝑤, 𝑇) =
√
𝑐 𝜙𝑤(𝑇 − 𝑡)𝜎𝑡 d𝑊2,𝑡 + ∫

ℝ+

(
𝑒𝜙𝑤(𝑇−𝑡)𝑧 − 1

)
�̃�(d𝑡, d𝑧), �̃�0(𝑤, 𝑇) = 0.

If 𝐸(𝑤, 𝑇) is a true martingale, then (27) follows from (28) and (31). As in the proof of The-
orem 3.3, we search for an expression of 𝑈(𝑤, 𝑇) which is affine on the past trajectory of 𝜎2.
However, we cannot directly invoke (Bondi et al., 2024, Theorem 7) due to the different struc-
ture of the Riccati-Volterra equation in (23) and of the process 𝑈(𝑤, 𝑇) itself. Fortunately, we can
adapt the procedure in the proof of (Bondi et al., 2024, Theorem 7). Specifically, thanks to the local
boundedness of Φ𝑤(𝑇, ⋅) (see (26)), ℚ− a.s.,

𝑈𝑡(𝑤, 𝑇) = ∫
𝑇+𝛿

𝑡

Φ𝑤(𝑇, 𝑠)𝑔0(𝑠)d𝑠 + 𝜙𝑤(𝑇 − 𝑡)𝑍𝑡 +
(
𝜋𝑇+𝛿−𝑡 ∗

(
𝜎2 − 𝑔0

))
(𝑡), for a.e. 𝑡 ∈ (0, 𝑇).

Here the functions

𝜋𝑇+𝛿−𝑡(𝑢) = ∫
𝑇+𝛿−𝑡

0

Φ𝑤(𝑇, 𝑇 + 𝛿 − 𝑠)((Δ𝑇+𝛿−𝑡−𝑠𝐾)
′ ∗ 𝐿)(𝑢)d𝑠, 𝑡 ∈ (0, 𝑇),

are well defined for almost every 𝑢 ∈ ℝ+ and belong to 𝐿1loc(ℝ+). At this point, for every 𝑡 ∈ (0, 𝑇)

we introduce the locally absolutely continuous function

Π̃𝑇+𝛿−𝑡(𝑢) = ∫
𝑢

0

𝜋𝑇+𝛿−𝑡(𝑠)d𝑠 + 𝜙𝑤(𝑇 − 𝑡)𝐿([0, 𝑢])

= ∫
𝑇+𝛿−𝑡

0

Φ𝑤(𝑇, 𝑇 + 𝛿 − 𝑠)((Δ𝑇+𝛿−𝑡−𝑠𝐾) ∗ 𝐿)(𝑢)d𝑠, 𝑢 ≥ 0,

where the second equality is due to (23) and a suitable change of variables. Therefore, also recalling
(1), the previous formula for 𝑈(𝑤, 𝑇) can be rewritten as, ℚ− a.s., for a.e. 𝑡 ∈ (0, 𝑇),

𝑈𝑡(𝑤, 𝑇) = ∫
𝑇+𝛿

𝑡

Φ𝑤(𝑇, 𝑠)𝑔0(𝑠)d𝑠 +
(
dΠ̃𝑇+𝛿−𝑡 ∗

(
𝜎2 − 𝑔0

))
(𝑡) + 𝜙𝑤(𝑇 − 𝑡)𝐿({0})

(
𝜎2 − 𝑔0

)
(𝑡),

which is an affine expression in terms of the past trajectories of 𝜎2. Now by Lemma 3.2 the real-
valued process𝐸(Re𝑤, 𝑇) = (exp{𝑈𝑡(Re𝑤, 𝑇)})𝑡∈[0,𝑇] is a truemartingale. Thus, thanks to (25), we
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can parallel the comparison argument in the proof of (Bondi et al., 2024, Theorem 11) to deduce
that

|exp {𝑈𝑡(𝑤, 𝑇)}| = exp {Re𝑈𝑡(𝑤, 𝑇)} ≤ 𝐶 exp {𝑈𝑡(Re𝑤, 𝑇)}, 𝑡 ∈ [0, 𝑇], ℚ − a.s.,

for some constant 𝐶 > 0. An application of (Jarrow, 2018, Lemma 1.4) completes the proof. □

4.1 VIX put options and futures prices

Theorem 4.6 provides a semi-explicit formula for the Fourier-Laplace transform 𝜆𝑇 of VIX2𝑇 inℂ−,
namely

𝜆𝑇(𝑤) = 𝔼
[
exp

{
𝑤 ⋅ VIX2𝑇

}]
= exp

{
∫

∞

0

Φ𝑤(𝑇, 𝑠)𝑔0(𝑠)d𝑠

}

= exp

{
∫

𝛿

0

ℎ𝑤(𝑠)𝑔0(𝑠 + 𝑇)d𝑠 + (𝑔0 ∗ 𝐺(𝜙𝑤(⋅)))(𝑇)

}
, 𝑤 ∈ ℂ−. (32)

This allows us to price put options written on VIX with the Fourier-inversion technique for the
bilateral Laplace transform shown in Carr and Lee (2009).More specifically, for a log strike 𝑘 ∈ ℝ,
the payoff function of such options defined on the whole real line is𝑤(𝑥) = (𝑒𝑘 −

√
𝑥+)+, 𝑥 ∈ ℝ,

where 𝑥+ represents VIX2. Then, denoting by 𝑃(𝑘, 𝑇) the price of a put option with maturity 𝑇
(and log strike 𝑘) we have (cf. (Carr and Lee, 2009, Equations (7.6)-(7.8)))

𝑃(𝑘, 𝑇) = 𝔼
[(
𝑒𝑘 − VIX𝑇

)+]
= −

1

4
√
𝜋𝑖 ∫

𝑧𝑟+𝑖∞

𝑧𝑟−𝑖∞

erf
(
𝑒𝑘

√
𝑧
)

𝑧3∕2
𝜆𝑇(𝑧)d𝑧

= −
1

4
√
𝜋 ∫

ℝ

Re

⎡⎢⎢⎢⎣
erf

(
𝑒𝑘

√
𝑧𝑟 + 𝑖𝑢

)
(𝑧𝑟 + 𝑖𝑢)

3∕2
𝜆𝑇(𝑧𝑟 + 𝑖𝑢)

⎤⎥⎥⎥⎦d𝑢

= −
1

2
√
𝜋 ∫

ℝ+

Re

⎡⎢⎢⎢⎣
erf

(
𝑒𝑘

√
𝑧𝑟 + 𝑖𝑢

)
(𝑧𝑟 + 𝑖𝑢)

3∕2
𝜆𝑇(𝑧𝑟 + 𝑖𝑢)

⎤⎥⎥⎥⎦d𝑢, 𝑧𝑟 < 0. (33)

Here erf represents the error function erf 𝑧 = 2√
𝜋
∫ 𝑧

0
𝑒−𝑡

2
d𝑡, 𝑧 ∈ ℂ, and for 𝑧 ∈ ℂ and 𝑎 ≥ 0, we

consider the power 𝑧𝑎 = Λ𝑎𝑒𝑖𝑎𝜃, where 𝑧 = Λ𝑒𝑖𝜃 with Λ ≥ 0, 𝜃 ∈ (−𝜋, 𝜋]. In particular, we write√
𝑧 = 𝑧1∕2. The last equality in (33) is due to the fact that the integrand is even. Indeed, this follows

from the well-known symmetry relation erf �̄� = erf 𝑧, 𝑧 ∈ ℂ, as well as the identities (for 𝑢 ≠ 0)

Re
(√

𝑧𝑟 + 𝑖𝑢
)
=

√√√√𝑧𝑟 +

√
𝑧2𝑟 + 𝑢2

2
, Im

(√
𝑧𝑟 + 𝑖𝑢

)
= sgn(𝑢)

√√√√−𝑧𝑟 +

√
𝑧2𝑟 + 𝑢2

2
.
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Moreover, we can use 𝜆𝑇 to determine 𝔼[VIX𝑇], that is, the futures price of VIX at time 𝑇. In
order to do this, notice that for every 𝑥 ≥ 0 the function (

√
𝜋𝑠)−1(𝑒−𝑥𝑠 − 1) +

√
𝑥 erf(

√
𝑠𝑥), 𝑠 > 0,

is an antiderivative of (2
√
𝜋)−1(1 − 𝑒−𝑥𝑠)𝑠−3∕2, 𝑠 > 0. From this relation we deduce the following

integral representation for the square-root function

√
𝑥+ =

1

2
√
𝜋 ∫

∞

0

1 − 𝑒−𝑠𝑥
+

𝑠
3

2

d𝑠, 𝑥 ∈ ℝ.

An application of Tonelli’s theorem yields

𝔼[VIX𝑇] =
1

2
√
𝜋 ∫

∞

0

1 − 𝜆𝑇(−𝑠)

𝑠
3

2

d𝑠. (34)

As in the case of the log returns process 𝑋 discussed in the final paragraph of Section 3, Equa-
tion (32) with 𝑤 = 𝑖𝑡, 𝑡 ∈ ℝ, provides a semi-explicit expression for the characteristic function of
VIX2𝑇 . This enables us to approximate both the futures prices 𝔼[VIX𝑇] and VIX put option prices
with maturity 𝑇 via the COS method, see Fang and Oosterlee (2009). This scheme entails the
computation of the integral

∫
𝑑

0

√
𝑥 cos 𝑥 d𝑥 =

√
𝑑 sin 𝑑 −

√
𝜋

2
𝑆

(√
2

𝜋
𝑑

)
, 𝑑 > 0,

where 𝑆(𝑥) = ∫ 𝑥

0
sin(

𝜋

2
𝑢2) d𝑢, 𝑥 ≥ 0, is the Fresnel sine integral. In Section 6 we apply the COS

method to calibrate our model to real market data because of its computational efficiency, which
relies on a reduced number of evaluations of 𝜆𝑇 compared to (33)–(34). Nonetheless, we need the
exact formulas (33)–(34) as a benchmark to determine the truncation bounds 𝑎 and 𝑏 of the COS
method. Since VIX2𝑇 ≥ 0, we set 𝑎 = 0, thereby reducing the problem to the upper bound 𝑏 > 0.
We refer to Section 6 for more details.

5 NUMERICAL APPROXIMATION OF THEMODEL

According to the formulae in (15)–(16) and (33), in order to price options on 𝑆 and VIX with matu-
rity 𝑇, one needs to compute Ψ𝑋𝑇(𝑤1) and 𝜆𝑇(𝑤2), where 𝑤1, 𝑤2 belong to appropriate regions of
ℂ. In addition, the values 𝜆𝑇(−𝑠), 𝑠 ≥ 0, are also necessary to determine the futures price of VIX at
time 𝑇. Consequently, looking at the expressions of these Fourier-Laplace transforms in (14) and
(32), the solutions of the Riccati-Volterra equations (7) and (23), that is, 𝜓𝑤1, 𝜙𝑤2 and 𝜙−𝑠, have
to be approximated on the interval [0, 𝑇]. The previous remarks also apply to the COS method,
which requires the computation of the characteristic functions of𝑋𝑇 and VIX2𝑇 . Among the avail-
able numerical methods to solve (7)–(23), we choose the multi-factor scheme suggested in Abi
Jaber and El Euch (2019b). Another possibility would be to use the Adams scheme Diethelm et al.
(2002), Diethelm et al. (2004), hybrid schemes as in Callegaro et al. (2021), or an adaptation of the
multi-factor hybrid approach in Rømer (2022b) (Figure 1).
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F IGURE 1 Calibrated implied volatility of SPX options on May 19, 2017, using the parameters in Table 1. The
blue and red crosses are, respectively, the bid and ask of market implied volatilities. The implied volatility smiles
from the model are in green. The abscissa is in log-moneyness and 𝑇 is time to expiry in years. [Color figure can
be viewed at wileyonlinelibrary.com]

The multi-factor scheme consists in approximating the kernel 𝐾 with a weighted sum of
exponentials, namely with functions 𝐾𝑛, 𝑛 ∈ ℕ, of the form

𝐾𝑛(𝑡) =

𝑛∑
𝑗=1

𝑚𝑗,𝑛𝑒
−𝑥𝑗,𝑛𝑡, 𝑡 ≥ 0, (35)

where 𝑚𝑗,𝑛, 𝑥𝑗,𝑛 > 0, 𝑗 = 1,… , 𝑛. In what follows, we write 𝐦 = {𝑚𝑗,𝑛| 𝑗 = 1,… , 𝑛, 𝑛 ∈ ℕ} and
𝐱 = {𝑥𝑗,𝑛| 𝑗 = 1,… , 𝑛, 𝑛 ∈ ℕ}. Notice that 𝐾𝑛, 𝑛 ∈ ℕ, is completely monotone on (0,∞), mean-
ing that it is nonnegative and infinitely differentiable on this interval, with nonpositive [resp.,
nonnegative] odd [resp., even] 𝑘− derivative, 𝑘 ∈ ℕ. More details about this approximation and
the idea behind it can be found in Remark 5.2 below and in the references therein.
Given𝑛 ∈ ℕ and𝑤 ∈ ℂ such that Re𝑤 ∈ [0, 1], we now introduce theRiccati-Volterra equation

𝜓𝑤,𝑛(𝑡) = ∫
𝑡

0

𝐾𝑛(𝑡 − 𝑠)R
(
𝑤,𝜓𝑤,𝑛(𝑠)

)
d𝑠 =

(
𝐾𝑛 ∗ R

(
𝑤,𝜓𝑤,𝑛(⋅)

))
(𝑡), 𝑡 ≥ 0. (36)

Note that the existence and uniqueness of 𝜓𝑤,𝑛 is guaranteed by Theorem 3.1 (i), because 𝐾𝑛 sat-
isfies Hypothesis 2.1. The advantage in considering (36) instead of (7) is that its solution 𝜓𝑤,𝑛 can
be obtained by numerically solving a system of integral equations with standard methods. More
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precisely, 𝜓𝑤,𝑛(𝑡) =
∑𝑛

𝑗=1
𝑚𝑗,𝑛𝜓

(𝑗)
𝑤,𝑛(𝑡) for every 𝑡 ≥ 0, where

𝜓
(𝑗)
𝑤,𝑛(𝑡) = 𝑒−𝑥𝑗,𝑛𝑡 ∫

𝑡

0

𝑒𝑥𝑗,𝑛𝑠R

(
𝑤,

𝑛∑
𝑘=1

𝑚𝑘,𝑛𝜓
(𝑘)
𝑤,𝑛(𝑠)

)
d𝑠, 𝑗 = 1,… , 𝑛.

Analogously, for every 𝑛 ∈ ℕ and 𝑤 ∈ ℂ−, we consider the Riccati-Volterra equation

𝜙𝑤,𝑛(𝑡) = ∫
∞

0

ℎ𝑤(𝑠)𝐾𝑛(𝑠 + 𝑡)d𝑠 +
(
𝐾𝑛 ∗

(
𝐺
(
𝜙𝑤,𝑛(⋅)

)))
(𝑡), 𝑡 ≥ 0. (37)

We have that 𝜙𝑤,𝑛(𝑡) =
∑𝑛

𝑗=1
𝑚𝑗,𝑛𝜙

(𝑗)
𝑤,𝑛(𝑡), 𝑡 ≥ 0, with

𝜙
(𝑗)
𝑤,𝑛(𝑡) = 𝑒−𝑥𝑗,𝑛𝑡

(
∫

∞

0

ℎ𝑤(𝑠)𝑒
−𝑥𝑗,𝑛𝑠d𝑠 + ∫

𝑡

0

𝑒𝑥𝑗,𝑛𝑠𝐺

(
𝑛∑
𝑘=1

𝑚𝑘,𝑛𝜙
(𝑘)
𝑤,𝑛(𝑠)

)
d𝑠

)
, 𝑗 = 1, … , 𝑛.

The following theorem offers an estimate on the uniform distance on [0, 𝑇] between 𝜓𝑤 and 𝜓𝑤,𝑛,
as well as between 𝜙𝑤 and 𝜙𝑤,𝑛. In the former case, it generalizes (Abi Jaber & El Euch, 2019b,
Theorem 4.1) to our framework with jumps. Its proof, which we postpone to Appendix C, relies
on results related to Riccati-Volterra equations which are proved in Appendix A.

Theorem 5.1. Assume that 𝐾 satisfies Hypothesis 2.1. Let 𝑇 > 0 and denote by 𝐸𝜆,𝑛 the canonical
resolvent of 𝐾𝑛 with parameter 𝜆 ∈ ℝ, 𝑛 ∈ ℕ.

(i) Suppose that ∫ 𝑇

0
|𝐸𝑏+𝜌+√𝑐,𝑛(𝑠)|d𝑠 ≤ 𝐶 for every 𝑛 ∈ ℕ, where 𝐶 = 𝐶(𝜌, 𝑏,𝐦, 𝐱, 𝑇) > 0. Then

there exists a constant 𝐶 = 𝐶(𝜌, 𝑏, 𝑐, Λ, 𝜈,𝐦, 𝐱, 𝑇) > 0 such that, for every 𝑤 ∈ ℂ with Re𝑤 ∈

[0, 1] and 𝑛 ∈ ℕ,

sup
𝑡∈[0,𝑇]

||𝜓𝑤(𝑡) − 𝜓𝑤,𝑛(𝑡)|| ≤ 𝐶
(
1 + |Im𝑤|6)∫ 𝑇

0

𝐸
𝐶
(
1+|Im𝑤|2),𝐾(𝑠)d𝑠

× ∫
𝑇

0

|𝐾𝑛(𝑠) − 𝐾(𝑠)|d𝑠. (38)

In addition, if 𝑏 < 0 and 𝜌 < 0 then the constant 𝐶 does not depend on 𝐦 or 𝐱, and the
dependence on 𝑇 is via ‖𝐾‖𝐿1([0,𝑇]).

(ii) Suppose that ∫ 𝑇∨𝛿

0
|𝐸𝑏+,𝑛(𝑠)|d𝑠 ≤ 𝐶 for every 𝑛 ∈ ℕ, where 𝐶 = 𝐶(𝑏,𝐦, 𝐱, 𝑇, 𝛿) > 0. Then there

exists a constant 𝐶 = 𝐶(𝑏, 𝑐, Λ, 𝜈,𝐦, 𝐱, 𝑇, 𝛿) > 0 such that, for every 𝑤 ∈ ℂ− and 𝑛 ∈ ℕ,

sup
𝑡∈[0,𝑇]

||𝜙𝑤(𝑡) − 𝜙𝑤,𝑛(𝑡)|| ≤ 𝐶
(
1 + |𝑤|6)∫ 𝑇

0

𝐸
𝐶
(
1+|𝑤|2),𝐾(𝑠)d𝑠 ∫

𝑇∨𝛿

0

|𝐾𝑛(𝑠) − 𝐾(𝑠)|d𝑠. (39)

Remark 5.2. Recent literature has focused on efficientmulti-factor approximations of the kernel𝐾
with𝐾𝑛, 𝑛 ∈ ℕ, as in (35), see Bayer and Breneis (2023), Bayer and Breneis (2023), Rømer (2022b).
Since in Section 6 we use the fractional kernel𝐾(𝑡) = 𝑡𝛼−1∕Γ(𝛼)with 𝛼 ∈ (1∕2, 1] to calibrate our
model (1)–(5) to market data, we choose the geometric Gaussian scheme in (Bayer and Breneis,
2023, Theorem 3.9). This scheme guarantees, given 𝑇 > 0, a fast convergence𝐾𝑛 → 𝐾 in 𝐿1([0, 𝑇])
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for 𝛼 close to the lower bound 1∕2. A small parameter 𝛼 is crucial for the joint calibration of S&P
500 andVIX smiles, as shown by the numerical experiments in Sections 6–7. The fast convergence
of the method enables us to consider few factors, that is, 𝑛 small, for the approximation 𝐾𝑛 of 𝐾,
which improves the efficiency of our implementation. The geometric Gaussian method in Bayer
and Breneis (2023) relies on a representation of the kernel as 𝐾(𝑡) = ∫

ℝ+
𝑒−𝑥𝑡𝜇(d𝑥), 𝑡 > 0, where

𝜇 is a nonnegative measure on ℝ+. This representation holds for general completely monotone
kernels thanks to the Bernstein-Widder theorem, see, for example, (Gripenberg et al., 1990, The-
orem 2.5, Chapter 5). Approximating 𝜇 with a weighted sum of Dirac measures gives 𝐾𝑛 in (35).
In order to determine 𝐦 and 𝐱 in (35) (Bayer and Breneis, 2023, Theorem 3.9) considers a geo-
metric partition of [0, 𝜉], for some 𝜉 > 0, and applies, on the resulting intervals, quadrature rules
of order 𝑚 ≥ 1 with respect to suitable weight functions. Previous works have proved the con-
vergence 𝐾𝑛 → 𝐾 in 𝐿2loc(ℝ+) via quadrature rules of order 1, see (Abi Jaber, 2019, Lemma A.3)
and (Abi Jaber and El Euch, 2019b, Proposition 3.3). For this type of approximated kernels 𝐾𝑛,
𝑛− uniform 𝐿2loc− estimates are also available, see (Chevalier et al., 2022, Theorem B.1). Note that,
choosing 𝑇 > 𝛿, the 𝐿1([0, 𝑇])− convergence of 𝐾𝑛 to 𝐾 ensures the validity of the hypotheses
required in both points of Theorem 5.1 (see also (Gripenberg et al., 1990, Theorem 3.1, Chapter
2)), and therefore the convergence of the multi-factor scheme.

6 CALIBRATION

We have shown that Fourier-based methods can be applied to the rough Hawkes Heston model
in order to price options on the underlying and the corresponding volatility index. Based on these
techniques, in this section we calibrate a parsimonious specification of the rough Hawkes Heston
model to S&P 500 and VIX options data on May 19, 2017. This is the same data set as in Gatheral
et al. (2020). In Table 3 [resp., Table 4] we report the strikes and maturities of the SPX options
[resp., VIX options] considered for the calibration. Our objective is tominimize the relative RMSE
(root-mean-square error) betweenmarket and theoretical implied volatilities of both SPX andVIX
options. More precisely, denoting by 𝚯 the parameters of the model, the goal of the calibration
procedure is to determine

argmin
𝚯

√√√√√∑
𝑖,𝑗

(
𝜎mktSPX

(
𝑇𝑖, 𝐾𝑗

)
− 𝜎𝚯SPX

(
𝑇𝑖, 𝐾𝑗

)
𝜎mktSPX

(
𝑇𝑖, 𝐾𝑗

) )2

+
∑
𝑖,𝑗

(
𝜎mktVIX

(
𝑇𝑖, 𝐾𝑗

)
− 𝜎𝚯VIX

(
𝑇𝑖, 𝐾𝑗

)
𝜎mktVIX

(
𝑇𝑖, 𝐾𝑗

) )2

. (40)

Here 𝜎mktSPX(𝑇𝑖, 𝐾𝑗) [resp., 𝜎
mkt
VIX(𝑇𝑖, 𝐾𝑗) ] is the implied volatility of an option on SPX [resp.,

VIX] with maturity 𝑇𝑖 and strike 𝐾𝑗 , obtained from market data. The symbols 𝜎𝚯SPX(𝑇𝑖, 𝐾𝑗) and
𝜎𝚯VIX(𝑇𝑖, 𝐾𝑗) denote the same quantities computed in the rough Hawkes Heston model with
parameters 𝚯. The indexes 𝑖, 𝑗 are an enumeration of the data set in Tables 3 and 4. The implied
volatilities of VIX options are computed with respect to market futures prices. As we will explain
below, after calibration, model futures approximate well market futures (see Figure 4).
As it is customary in rough volatility models, for our parametrization we choose a power kernel

of the form 𝐾(𝑡) = 𝑡𝛼−1∕Γ(𝛼), 𝛼 ∈ (1∕2, 1]. As explained in Remark 5.2, we approximate it with
the sum of exponentials in (35) using the geometric Gaussian scheme in (Bayer and Breneis, 2023,
Theorem 3.9) with 𝑇 = 0.091: the longest maturity that we consider for the calibration. In fact, we
scale the resulting approximated kernel multiplying it by a positive constant. We then determine
such a constant by a fast optimization procedure in order to minimize the 𝐿1([0, 𝑇])− distance
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TABLE 1 Calibrated parameters for the rough Hawkes Heston model.

𝜶 𝝆 𝒃 𝒄 𝚲 𝜷 𝝈𝟐
𝟎

0.527 −0.731 −1.812 0.115 0.276 0.049 0.0079

between the multi-factor kernel and 𝐾. We use 𝑛 = 20 factors in (35) to obtain an empirical con-
vergence of the approximating method, noticing that fewer (∼ 10) are sufficient when it comes to
SPX options only. In the sequel, we denote by �̄�20 the corresponding approximating kernel.
Regarding the choice of the fractional kernel𝐾, we remark that the recent study Abi Jaber et al.

(2022a), comparing different types of kernels (fractional, log-modulated, shifted and exponential)
in a Gaussian Volterra setup, concludes that a conventional one factor, Markovian exponential
kernel is able to jointly fit the SPX/VIX smiles outperforming its rough and non-rough path-
dependent counterparts. Since the theoretical study of the previous sections covers a wide range
of kernels (e.g., completely monotone), an interesting question is whether a similar behavior is
exhibited in our framework. This important question could be addressed in futures studies of
variants of the rough Hawkes Heston model.
By analogy with the rough Heston model introduced and studied in El Euch and Rosenbaum

(2018), El Euch and Rosenbaum (2019), we consider an initial input curve 𝑔0 of the form

𝑔0(𝑡) = 𝜎20 + 𝛽 ∫
𝑡

0

𝐾(𝑠)d𝑠 = 𝜎20 +
𝛽

Γ(𝛼 + 1)
𝑡𝛼, 𝑡 ≥ 0, (41)

where 𝜎20, 𝛽 ≥ 0. Note that the structure of 𝑔0 in (41) is quite restrictive, but it allows to keep the
model parsimonious with a small number of parameters. Indeed, the initial variance curve in (41)
is specified only by 𝜎20 and 𝛽. Our choice is also justified by the fact that we focus on short time-to-
maturity options, so the lack of flexibility for 𝑔0 is not a drawback in our application.More general
forms of 𝑔0 or expressions extracted from the replication formula for the log-contract as in (Abi
Jaber et al., 2022b, Equation (5.1)) can be used to calibrate VIX smiles for longer times-to-maturity.
In our numerical illustration, we consider the kernel �̄�20 and 𝑔0 as in (41). These choices guar-

antee the well-posedness, in the weak sense, of (1), because �̄�20 is completely monotone and 𝑔0
satisfies Hypothesis 2.2 (see Remark 2.3).
For the law of the jumps, to keep the number of parameters low we choose an exponential

distribution with rate 1, 𝜈(d𝑧) = exp(−𝑧) d𝑧. Our parsimonious specification of the model has
therefore – other than the two parameters (𝛽, 𝜎20) related to 𝑔0 – five evolution-related parame-
ters (𝛼, 𝜌, 𝑏, 𝑐, Λ). Like in Gatheral et al. (2020), we concentrate on short maturities for which, as
pointed out in Guyon (2020b), “VIX derivatives are most liquid and the joint calibration is most
difficult.”
As already mentioned in the final paragraphs of Section 3 and Subsection 4.1, we employ the

COS method to calibrate our model to market data due to its efficiency. In order to determine the
truncation bounds of the scheme (𝑎1 and 𝑏1 for SPX options, and only the upper bound 𝑏2 for VIX
options), we rely on the exact formulas (15)–(16) and (33)–(34), which we consider as an accurate
benchmark. At each maturity of the data set, these bounds possibly depend on all the parameters
of the model, but we empirically observe that the resulting implied volatilities are mostly affected
by Λ for SPX options. Consequently, we fix offline a grid of bounds depending on the maturities
𝑇𝑖 and Λ for SPX options, only on 𝑇𝑖 for VIX options, and we use these bounds in the calibration.
The resulting calibrated parameters are reported in Table 1.
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F IGURE 2 Zoom at-the-money of the calibrated implied volatility of SPX options on May 19, 2017, using the
parameters in Table 1. [Color figure can be viewed at wileyonlinelibrary.com]

Starting from the values in Table 1, we thenminimize the following functional of𝚯, which takes
into account the relative number of SPX/VIX options in the sample considered for the calibration:

𝑐1

√√√√√∑
𝑖,𝑗

(
𝜎mktSPX

(
𝑇𝑖, 𝐾𝑗

)
− 𝜎𝚯SPX

(
𝑇𝑖, 𝐾𝑗

)
𝜎mktSPX

(
𝑇𝑖, 𝐾𝑗

) )2

+ 𝑐2

√√√√√∑
𝑖,𝑗

(
𝜎mktVIX

(
𝑇𝑖, 𝐾𝑗

)
− 𝜎𝚯VIX

(
𝑇𝑖, 𝐾𝑗

)
𝜎mktVIX

(
𝑇𝑖, 𝐾𝑗

) )2

,

where 𝑐1 = 71.4%, 𝑐2 = 28.6%.

However, no significant changes in the parameters have to be reported.
We observe that the value of𝛼 in Table 1 is very close to its lower bound limit 0.5. This is coherent

with previous estimates in the rough volatility literature, see for instance Alos and Shiraya (2019),
Bayer et al. (2016), Bennedsen et al. (2021), El Euch et al. (2018), Fukasawa (2017), Gatheral et al.
(2018), Gatheral et al. (2020). The estimation of the correlation parameter 𝜌 is also in line with
empirical estimates, for example, Cont (2001), and what is commonly known as the leverage effect
(Curato & Sanfelici, 2015; El Euch et al., 2018; Mancino & Toscano, 2022). We notice that for the
joint calibration we can keep the vol-of-vol parameter 𝑐 small because an important part of the
volatility fluctuation is captured by the self-exciting jumps controlled by the parameters 𝛼 and Λ.
This responds to the issue, raised in Guyon (2020b), that the “very large negative skew of short-
term SPX options, which in continuous models implies a very large volatility of volatility, seems
inconsistent with the comparatively low levels of VIX implied volatilities.”
The calibrated implied volatility smiles for S&P 500 andVIX options are plotted in Figures 1 and

3, respectively. We zoom the calibration of the S&P 500 options at-the-money in Figure 2. Figure 4
focuses on the VIX term structure, which we do not include in the functional (40) used for the
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F IGURE 3 Calibrated implied volatility of VIX options on May 19, 2017, using the parameters in Table 1. The
blue and red crosses are respectively the bid and ask of market implied volatilities. The implied volatility smiles
from the model are in green. The abscissa is in strikes and 𝑇 is time to expiry in years. [Color figure can be viewed
at wileyonlinelibrary.com]

F IGURE 4 VIX term structure. [Color
figure can be viewed at
wileyonlinelibrary.com]

calibration. We remark that the term structure of the model is not flexible enough to perfectly
reproduce the shape of the market VIX futures, mainly due to a change of convexity. However,
the maximal relative distance between market and model data is ∼ 0.5%, which is reasonable
considering that we have implicitly assumed a “flat” initial volatility curve, see (41). Furthermore,
Figure 5 shows the implied volatility smile for S&P 500 options with expiration 𝑇 = 0.179 (July 21,
2017): 1 month after the last, calibrated maturity 𝑇 = 0.091. Despite the fact that 𝑇 = 0.179 is not
included in (40), the model is able to replicate market implied volatility smiles with an accuracy
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F IGURE 5 Implied volatility of SPX
options on May 19, 2017, with time to expiry
𝑇 = 0.179 years. [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE 2 Calibrated parameters for the rough Heston model.

𝜶 𝝆 𝒃 𝒄 𝜷 𝝈𝟐
𝟎

0.501 −0.774 −2.185 0.153 0.055 0.0092

comparable to the other maturities considered for S&P 500 options (cf. Figure 1). Overall, these
graphs show that the model fits remarkably well both S&P 500 and VIX implied volatilities.
The shape of the smile at-the-money for S&P 500 options is well-captured and the distance

to the bid-ask corridor – across the maturities – is at most of approximately one bid-ask spread.
For the two shortest maturities, most of the model implied volatilities at-the-money are actually
inside the bid-ask corridor. The fit is not perfect for very negative log-moneyness. This is also
seen – possibly to a less extent – in the quadratic rough Heston model Gatheral et al. (2020). We
conjecture that, at the cost of increasing the complexity of the model, even better results could be
obtained if we replace the exponential law for the jumps by a law with Pareto tails as suggested in
Cont (2001), Jiao et al. (2021) and the references therein. Regarding theVIX implied volatilities, we
observe that – even for options deep out-of-the-money – themodel implied volatilities stay almost
systematically within the bid-ask corridor, whether it is calculated using call or for put options.

6.1 Calibration with the rough Heston model

The model (1)–(5) proposed in this paper is an extension of the rough Heston model (see El Euch
& Rosenbaum, 2018, 2019), obtained by adding a jump component with intensity proportional to
the spot variance 𝜎2. In particular, the rough Heston model can be recovered from (1) to (5) by
setting 𝜈(d𝑧) = 0. In Introduction 1 and Section 2, we justify the presence of self-exciting jumps
common to the underlying and the volatility based on empirical evidence of jump-clustering phe-
nomena and endogeneity of financialmarkets. The purpose of this subsection (see also Subsection
7.1) is to investigate the impact of jumps with numerical experiments. To do this, we perform a
calibration exercise with the rough Heston model using the same dataset as before (cf. Section 6)
and considering the same functional (40) to minimize. The calibrated parameters are reported in
Table 2.
The resulting implied volatility smiles of SPX/VIX options for two selected maturities (𝑇 =

0.032, 𝑇 = 0.091) are shown in Figure 6. Here we see that the rough Heston model is able to
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F IGURE 6 Calibrated implied volatility of SPX (left) and VIX (right) options on May 19, 2017, using the
rough Heston model. The parameters are reported in Table 2. The abscissa is in log-moneyness for SPX options
and in strikes for VIX options. The time to expiry in years is 𝑇 = 0.032 in the first line and 𝑇 = 0.091 in the second
line. [Color figure can be viewed at wileyonlinelibrary.com]

reproduce quite well the level and shape of VIX options smiles. However, the roughHestonmodel
struggles to capture the out-of-the-money skew of S&P 500 options, especially for 𝑇 = 0.032. In
an attempt to understand whether this effect is due to the VIX options in (40), we run another
calibration exercise with the aim of minimizing the following functional in 𝚯:

√√√√√∑
𝑖,𝑗

(
𝜎mktSPX

(
𝑇𝑖, 𝐾𝑗

)
− 𝜎𝚯SPX

(
𝑇𝑖, 𝐾𝑗

)
𝜎mktSPX

(
𝑇𝑖, 𝐾𝑗

) )2

. (42)

The strikes and maturities used in this example are listed in Tables 3–5. We perform the same
optimization for the rough Hawkes Heston model and display the outcomes in Figure 7. These
results confirm that the rough Heston model does not produce a correct shape for the left-tails
of SPX implied volatility smiles, and that in this aspect it is consistently outperformed by the
extension (1)–(5) proposed in this paper.
On the basis of these experiments, we conclude that the introduction of a jump component

in the rough Heston model is significant and does not cause redundancy. In particular, the
jumps allow to better reproduce the skew of out-of-the-money S&P 500 options, especially for
short maturities.
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TABLE 3 SPX options data on May 19, 2017, considered for the calibration. The listed maturities correspond
to 𝑇 = 0.032, 0.052, 0.071, 0.091, respectively.

Maturity log-moneyness
May 31, 2017 −0.3369, −0.2938, −0.2524, −0.2257, −0.1921, −0.1895, −0.1845, −0.1669, −0.1546, −0.128,

−0.1256, −0.1232, −0.1185, −0.1161, −0.1138, −0.1091, −0.1067, −0.1044, −0.1021,
−0.0998, −0.0974, −0.0951, −0.0905, −0.0791, −0.0746, −0.0723, −0.07, −0.0678,
−0.0655, −0.0611, −0.0588, −0.0544, −0.0522, −0.05, −0.0478, −0.0456, −0.0434,
−0.0412, −0.039, −0.0368, −0.0346, −0.0325, −0.0303, −0.0281, −0.026, −0.0238,
−0.0217, −0.0195, −0.0174, −0.0153, −0.0131, −0.011, −0.0089, −0.0068, −0.0047,
−0.0026, −0.0005, 0.0016, 0.0037, 0.0058, 0.0079, 0.01, 0.0121, 0.0141, 0.0162, 0.0183,
0.0203, 0.0224, 0.0244, 0.0265, 0.0285, 0.0306, 0.0346, 0.0367, 0.0407.

June 7, 2017 −0.1019, −0.0789, −0.0565, −0.0543, −0.0476, −0.0454, −0.0432, −0.0345, −0.0323,
−0.0302, −0.0258, −0.0237, −0.0215, −0.0194, 0.0101, 0.0122, 0.0143, 0.0164, 0.0184,
0.0205, 0.0225, 0.0246, 0.0266, 0.0287, 0.0368.

June 14, 2017 −0.1741, −0.1253, −0.1018, −0.0788, −0.0698, −0.0475, −0.0343, −0.0322, −0.03, −0.0278,
−0.0257, 0.0144, 0.0165, 0.0186, 0.0206, 0.0227, 0.0247, 0.0268, 0.0288, 0.0329, 0.0349,
0.037, 0.041, 0.045, 0.049.

June 21, 2017 −0.2519, −0.1993, −0.1866, −0.1252, −0.0832, −0.0651, −0.0495, −0.0473, −0.0429,
−0.0408, −0.0386, 0.0187, 0.0208, 0.0228, 0.0249, 0.0371, 0.0391.

TABLE 4 VIX options data on May 19, 2017, considered for the calibration. The listed maturities correspond
to 𝑇 = 0.032, 0.052, 0.071, 0.091, respectively.

Maturity Strikes
May 31, 2017 11.5, 12.5, 13, 13.5, 14, 14.5, 15, 16, 17, 18, 20, 23.
June 7, 2017 11.5, 12, 12.5, 13, 14, 14.5, 15, 16, 17, 19, 20.
June 14, 2017 11, 11.5, 12.5, 15, 16, 19, 25.
June 21, 2017 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

32.5, 35.

TABLE 5 SPX options data on May 19, 2017, considered for the calibration of (42) in addition to Table 3. The
maturity corresponds to 𝑇 = 0.179.

Maturity log-moneyness
July 21, 2017 −0.3071, −0.2789, −0.2515, −0.2248, −0.2118, −0.1989, −0.1861, −0.176, −0.1735, −0.171,

−0.1661, −0.1636, −0.1611, −0.1587, −0.1537, −0.1488, −0.1367, −0.1295, −0.1247, −0.12,
−0.1129, −0.1059, −0.0966, −0.092, −0.0897, −0.0874, −0.0851, −0.0828, −0.0123,
−0.008, −0.0059, −0.0038, −0.0017, 0.0004, 0.0025, 0.0046, 0.0088, 0.0109, 0.015,
0.0171, 0.0191, 0.0212, 0.0233, 0.0253, 0.0274, 0.0294, 0.0314, 0.0335, 0.0355, 0.0375,
0.0396, 0.0416, 0.0436, 0.0456, 0.0476, 0.0496, 0.0516, 0.0536, 0.0556, 0.0576, 0.0596,
0.0811, 0.085, 0.0888.

7 SENSITIVITIES OF THE IMPLIED VOLATILITIES

In this sectionwe study the sensitivity of the implied volatilities of S&P 500 and VIX options to the
parameters of the roughHawkesHestonmodel. Starting from the calibrated parameters presented
in Table 1, we analyze the impact of a change in the evolution-related parameters (𝛼, 𝜌, 𝑏, 𝑐, Λ) and
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F IGURE 7 SPX implied volatility smiles obtained by minimizing the functional in (42) for the rough Heston
model (orange) and the rough Hawkes Heston model (green). The blue and red crosses are respectively the bid
and ask of market implied volatilities on May 19, 2017. The abscissa is in log-moneyness and 𝑇 is the time to
expiry in years. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 Sensitivity of implied volatility for SPX (left and center) and VIX (right) options with respect to
the kernel power 𝛼 for the shortest maturity. [Color figure can be viewed at wileyonlinelibrary.com]

the initial curve parameters (𝛽, 𝜎20) on the implied volatilities for the shortest maturity, and for the
shortest and longest maturities, respectively.
We begin with the sensitivity with respect to the parameter 𝛼 ∈ (0.5, 1], which as we will see

plays a crucial role in ourmodel.We can observe in Figure 8 – as is the case for other rough volatil-
ity models – that modifications of the parameter 𝛼 change the ATM skew of the implied volatility
of S&P 500 options. A good convexity and ATM skew, for the maturities considered in the calibra-
tion, can be obtainedwith very low values of the parameter𝛼, confirming the findings in the rough
volatility literature. To elucidate the influence of the parameter 𝛼 on the ATM skews, we plot in
Figure 9 the log-log plots of ATMskews as a function ofmaturity, for the calibrated parameters and
different values of 𝛼. We observe that a perfect power decay, for the given maturities, is captured
by 𝛼 = 0.527, but not by higher values of 𝛼. For 𝛼 = 0.527, the linear fit is almost perfect with a
−0.587 power decay and an unquestionable coefficient of determination𝑅2 = 0.99901. It is impor-
tant to mention at this point the recent works (Delemotte et al., 2023; Guyon & El Amrani, 2022)
which point out that the linear fit is no longer optimal when considering a larger range of matu-
rities. Our findings for the maturities considered in the calibration are coherent with the results
in the rough volatility literature, for example, Bayer et al. (2016), Gatheral et al. (2018), indicating

a power law for the ATM skew as a function of maturity given approximately by 𝑇−
1

2 . For other
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F IGURE 9 Power decay of the ATM volatility skew. On the left, the log-log plot of ATM volatility skew for
the calibrated parameters of Table 1. At the center, the log-log plot of ATM volatility skew for different values of 𝛼;
the other parameters are as in Table 1. On the right, the fitted power decay of the ATM volatility skew as function
of 𝛼; the power decay is estimated using the five shortest maturities, that is, log(𝑇) ∈ [−5.5, −3.5]. [Color figure
can be viewed at wileyonlinelibrary.com]

values of 𝛼, the linear fit with a different slope is also observed for the shortest maturities. In
Figure 9, we plot the estimated power decay for the short maturities as a function of 𝛼. This
plot shows that the relationship between the power decay and 𝛼 is approximately linear for the
short maturities.
More importantly, within the joint calibration framework, the parameter 𝛼 has a big impact

on the level and shape of implied volatilities of VIX options, see Figure 8. As 𝛼 decreases the
implied volatilities shift downwards. This feature is fundamental to bring down the VIX implied
volatilities maintaining the correct skew for SPX implied volatilities, explaining therefore the shift
mentioned in Guyon (2020a), Guyon (2020b). We ratify therefore – within the affine framework –
the relevance of rough non-Markovian volatility to jointly calibrate SPX and VIX smiles.
We now analyze the dependency of the implied volatilities with respect to the other parameters.

Figure 10 shows the sensitivities with respect to the evolution-related parameters (𝑏, 𝑐, 𝜌, Λ). We
notice that – unless we zoom at-the-money – the sensitivity of the SPX smiles with respect to (𝑏, 𝑐)
is relatively small. The main effect of an increment in the reverting speed −𝑏 is a shift slightly
downwards of the SPX implied volatility and a more pronounced upward shift and a reduction
of the concavity on the VIX implied volatility. The impact of the volatility of volatility 𝑐 is similar
for SPX options, with a slight change of concavity, and a more pronounced and less symmetric
effect on the level and concavity of implied volatility of VIX options. As usual, the correlation
parameter 𝜌 plays a big role by moving the minimum value to the left (𝜌 > 0) or to the right
(𝜌 < 0). Obviously, the VIX smiles do not depend on the correlation 𝜌. The effect of the (jump)
leverage Λ is relatively small on SPX implied volatilities, being primarily concentrated in the left-
tails of the smile, but fundamental on the VIX implied volatilities. For SPX implied volatilities, the
impact of Λ could be reduced to a rotation with the at-the-money value as pivot. The parameter
Λ also controls the level of VIX implied volatility out-of-the-money. As Λ increases this level goes
down, achieving the correct shift for the calibrated parameter. This effect is similar to the one
observed for the vol-of-vol 𝑐, but the sensitivity is larger, and it allows us to keep a low value of
𝑐 for the joint calibration. This explains the importance in our model of self-exciting jumps in
opposite directions for the underlying and volatility.
We now turn to the parameters (𝛽, 𝜎20) of the initial curve 𝑔0(𝑡) = 𝜎20 + 𝛽 ∫ 𝑡

0
𝐾(𝑠) d𝑠, 𝑡 ≥ 0 (see

(41)). Figure 11 shows the SPX and VIX implied volatility sensitivities for the shortest and longest
maturity. The impact of both parameters is similar for SPX andVIX options.When𝜎20 or 𝛽 increase
the SPX implied volatilitiesmove up and to the right, while theVIX implied volatilitiesmove down
and the concavity increases.
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F IGURE 10 Sensitivity of implied volatility for SPX (left, center) and VIX (right) options for the shortest
maturity with respect to: the mean reversion speed parameter 𝑏 (first line), the volatility of volatility 𝑐 (second
line), the correlation 𝜌 (third line), and the jump-leverage Λ (fourth line). [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 11 Sensitivity of implied volatility for SPX (left, left-center) and VIX (right-center, right) options
for the shortest (first line) and longest maturity (second line) with respect to the initial spot variance curve, that
is, intercept 𝜎20 , and proportional coefficient 𝛽. [Color figure can be viewed at wileyonlinelibrary.com]

7.1 Comparison with the rough Heston model

We now continue the discussion started in Subsection 6.1 regarding the relevance of jumps in the
implementation of the rough Hawkes Heston model. Contrary to Subsection 6.1, here we do not
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F IGURE 1 2 Effect of the jump component on the implied volatility of SPX (left) and VIX (right) options.
The rough Hawkes Heston (rHH) is in green and the rough Heston (rH) in orange. The blue and red crosses are
respectively the bid and ask of market implied volatilities for 𝑇 = 0.032. [Color figure can be viewed at
wileyonlinelibrary.com]

focus on the calibration to a particular dataset, but we take a more general point of view. More
precisely, we are interested in understanding how the jumps affect the implied volatility curves
of SPX/VIX options keeping all the other parameters constant. To do this, we take the values in
Table 1 for the rough Hawkes Heston model and simply remove the jump component by setting
𝜈(d𝑧) = 0, recovering then the rough Heston model. Figure 12 clearly shows that the jumps have
a significant impact on implied volatility smiles. In fact, they change the shape of S&P 500 curves
and the level of VIX curves. Hence we conclude that the model (1)–(5) suggested in this article is
a parsimonious extension of the rough Heston model which does provide a considerably richer
framework. Speaking of the joint calibration, the level and shape of SPX/VIX implied volatility
curves constitute two main issues to reconcile in order to successfully tackle the problem, see
Introduction 1. Since the self-exciting jumps affect them both, it appears that the rough Hawkes
Hestonmodel has an important advantage over its continuous counterpart (roughHeston), which
is also coherent with the experiments in Subsection 6.1.

8 CONCLUSION

We develop and study a new stochastic volatility model named the rough Hawkes Heston model.
It is a tractable affine Volterra model with rough volatility and volatility jumps that cluster and
that have the opposite direction but occur at the same time as the jumps of the underlying prices.
This model shares many features with other existing models, mainly the Heston Heston (1993),
Barndorff-Nielsen and Shephard Barndorff-Nielsen and Shephard (2001b), and rough Heston El
Euch andRosenbaum (2019)models. It takes advantage of the low regularity andmemory features
of rough volatility models, the large fluctuation of jumps, the clusters of Hawkes processes and
the explicit Fourier-Laplace transform of the affine setup. By combining themodeling advantages
of these approaches, it is able to better capture the joint dynamics of underlying prices and their
volatility index in a tractable fashion. The addition of a singular kernel in the dynamics of the
volatility, together with jumps, incorporates not only the rough volatility feature but also a jump-
clustering component. The presence of common jumps in the underlying and the volatility in
opposite directions is coherent with previous studies such as Cont and Kokholm (2013), Todorov
and Tauchen (2011).Moreover, the introduction of jumps that cluster – as in Bernis et al. (2021) – is
in accordancewith empirical findings, for example, Cont (2001), Cont (2011). Similar to Barndorff-
Nielsen and Shephard (2001b), El Euch and Rosenbaum (2019), Heston (1993), the rough Hawkes
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Heston model is parsimonious with only five evolution-related parameters, and it belongs to the
class of affine Volterramodels (Abi Jaber et al., 2019; Bondi et al., 2024). The affine Volterra nature
of themodel is appealing because it enables fast option pricing using theCOSmethod and efficient
low-factor approximations of the kernel with a sum of exponentials.
The parameter 𝛼 describing the power kernel in the volatility dynamics controls – as in the

rough Heston model – the underlying implied volatilities ATM skews. Our calibration exam-
ple indicates that this value is close to 0.5, which agrees with previous estimates in the rough
volatility literature (Bayer et al., 2016; Gatheral et al., 2018). This is not, however, the only role
played by the parameter 𝛼 in our setup, because the power kernel also affects the jump-clustering
feature of the model. As a consequence, the parameter 𝛼 plays a crucial role in controlling the
level of VIX implied volatilities. Together with the jump-leverage parameter Λ, the power kernel
allows us to bring down the VIX implied volatilities maintaining the correct skew for SPX implied
volatilities, consequently capturing the shift mentioned in Guyon (2020a), Guyon (2020b). This
confirms the relevance, in our affine framework, of rough volatility and clustering jumps tomodel
simultaneously the S&P 500 and VIX dynamics.
The affine relation between variance swap rates and forward variance – which generalizes the

affine relation between variance swap rates and spot variance in the classical framework Kallsen
et al. (2011) – is a by-product of our affine Volterra framework. This affine relation has been
confirmed empirically in Mancino et al. (2020).
To conclude, the roughHawkes Hestonmodel is able – in a tractable and parsimonious fashion

– to jointly calibrate S&P 500 and VIX options. The parsimonious character of our model is an
advantage compared to other models that jointly calibrate SPX/VIX options with either a large
number of parameters (Guyon & Lekeufack, 2022) or based on martingale transport considera-
tions (Guyon, 2020b; Guyon, 2023; Guyon & Bourgey, 2022). The affine character of the rough
Hawkes Heston model allows fast pricing using Fourier-techniques, instead of Monte Carlo or
machine learning methods as those used for instance in Gatheral et al. (2020), Rosenbaum and
Zhang (2021). Moreover, all the parameters in our model have a financial interpretation, and a
complete sensitivity analysis shows that they are not redundant since each of them controls a
different feature of the S&P 500 and VIX volatility smiles.
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APPENDIX A: PROOF OF THEOREM 3.1
In this appendix we prove Theorem 3.1 regarding the Riccati-Volterra equation (6)–(7) used to
study the Fourier-Laplace transform of the log returns (𝑋𝑡)𝑡≥0. We use the following notation:
given 𝑢, 𝑣 ∈ ℂ, let [𝑢, 𝑣] be the segment in ℂ having 𝑢 and 𝑣 as endpoints, that is, [𝑢, 𝑣] = {𝑧 ∈

ℂ ∶ 𝑧 = (1 − 𝑡)𝑢 + 𝑡𝑣, 𝑡 ∈ [0, 1]}, and denote by 𝑢 ∨ 𝑣 = Re𝑢 ∨ Re 𝑣 + 𝑖 Im𝑢 ∨ Im 𝑣.

Proof. Fix 𝑤 ∈ ℂ with Re𝑤 ∈ [0, 1].
(i) The proof of this point is divided into three steps. In the first step, we show the existence

of a noncontinuable solution 𝜓𝑤 of (7). In the second step, we prove that 𝜓𝑤 does not explode in
finite time, that is, that it is global solution. To conclude, in the third and last step, we prove the
uniqueness of 𝜓𝑤.
Step I. Let us compute from (6), for every 𝑣 ∈ ℂ−,

Re R(𝑤, 𝑣) =
1

2

(|Re𝑤|2 − Re𝑤
)
+

(
𝑏 + 𝜌

√
𝑐Re𝑤

)
Re 𝑣 + 𝑐

2
|Re 𝑣|2

−
1

2

(|Im𝑤|2 + 𝑐|Im 𝑣|2 + 2𝜌
√
𝑐 Im𝑤Im 𝑣

)
+ ∫

ℝ+

[
𝑒(Re 𝑣−ΛRe𝑤)𝑧 cos ((Im 𝑣 − ΛIm𝑤)𝑧) − Re𝑤

(
𝑒−Λ𝑧 − 1

)
− 1 − Re 𝑣𝑧

]
𝜈(d𝑧).

(A.1)
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Since |𝜌| ≤ 1 we have |𝜌√𝑐 Im𝑤Im 𝑣| ≤ √
𝑐|Im𝑤||Im 𝑣|, which implies

−
1

2

(|Im𝑤|2 + 𝑐|Im 𝑣|2 + 2𝜌
√
𝑐 Im𝑤Im 𝑣

) ≤ −
1

2

(|Im𝑤| −√
𝑐|Im 𝑣|)2 ≤ 0. (A.2)

Recalling that Re𝑤 ∈ [0, 1], we then obtain

Re R(𝑤, 𝑣) ≤ (
𝑏 + 𝜌

√
𝑐Re𝑤

)
Re 𝑣 + 𝑐

2
|Re 𝑣|2 + ∫

ℝ+

[
𝑒−ΛRe𝑤𝑧 − Re𝑤

(
𝑒−Λ𝑧 − 1

)
− 1

]
𝜈(d𝑧)

+ ∫
ℝ+

[
𝑒(Re 𝑣−ΛRe𝑤)𝑧 − 𝑒−ΛRe𝑤𝑧 − Re 𝑣𝑧

]
𝜈(d𝑧)

≤
(
𝑏 + 𝜌

√
𝑐Re𝑤 + ∫

ℝ+

𝑧
(
𝑒−ΛRe𝑤𝑧 − 1

)
𝜈(d𝑧)

)
Re 𝑣 + 𝑐

2
|Re 𝑣|2 + ∫

ℝ+

𝑒−ΛRe𝑤𝑧
(
𝑒Re 𝑣𝑧 − 1 − Re 𝑣𝑧

)
𝜈(d𝑧),

(A.3)

where for the second inequality we use

𝑒−ΛRe𝑤𝑧 − Re𝑤
(
𝑒−Λ𝑧 − 1

)
− 1 ≤ 0, 𝑧 ≥ 0. (A.4)

Let ℎ ∶ ℝ+ × ℝ− → ℝ− be the continuous function defined by

ℎ(𝑥, 𝑦) =

{ 1

𝑦
∫
ℝ+

𝑒−Λ𝑥𝑧(𝑒𝑦𝑧 − 1 − 𝑦𝑧)𝜈(d𝑧), 𝑦 < 0

0, 𝑦 = 0
, 𝑥 ≥ 0,

and note that 𝑦 ⋅ ℎ(𝑥, 𝑦) = ∫
ℝ+

𝑒−Λ𝑥𝑧(𝑒𝑦𝑧 − 1 − 𝑦𝑧)𝜈(d𝑧). At this point, we can use (A.3) to show
that

Re R(𝑤, 𝑣) ≤ (
𝐶𝑤 +

𝑐

2
Re 𝑣 + ℎ(Re𝑤,Re 𝑣)

)
Re 𝑣, 𝑣 ∈ ℂ−, (A.5)

where 𝐶𝑤 = 𝑏 + 𝜌
√
𝑐Re𝑤 + ∫

ℝ+
𝑧(𝑒−ΛRe𝑤𝑧 − 1)𝜈(d𝑧).

We now introduce the function R̃𝑤 ∶ ℂ → ℂ given by

R̃𝑤(𝑣) = R(𝑤,−Re 𝑣− + 𝑖Im 𝑣) + 𝐶𝑤Re 𝑣+, 𝑣 ∈ ℂ.

Observe that, by construction (see also (A.5))

Re R̃𝑤(𝑣) ≤
(
𝐶𝑤 −

𝑐

2
Re 𝑣− + ℎ(Re𝑤,−Re 𝑣−)

)
Re 𝑣, 𝑣 ∈ ℂ.

Since R̃𝑤 is continuous, we can invoke (Gripenberg et al., 1990, Therorem 1.1, Chapter 12) to assert
the existence of a continuous, noncontinuable solution 𝜓𝑤 ∶ [0, 𝑇max) → ℂ of the equation

𝜒 = 𝐾 ∗ R̃𝑤(𝜒(⋅)), 𝑡 ∈ [0, 𝑇max), (A.6)

for some 𝑇max ∈ (0,∞]. If we can show that Re𝜓𝑤 ≤ 0 in [0, 𝑇max), then we conclude that 𝜓𝑤 is
indeed a noncontinuable solution of (7), as well. To this end, consider the continuous function
𝜁(𝑡) = 𝐶𝑤 −

𝑐

2
Re𝜓𝑤(𝑡)− + ℎ(Re𝑤,−Re𝜓𝑤(𝑡)−) defined for 𝑡 ∈ [0, 𝑇max). Taking the real part in



38 BONDI et al.

(A.6), for every 𝑇 ∈ (0, 𝑇max), we obtain

Re𝜓𝑤(𝑡) = −𝛾𝑇(𝑡) + ∫
𝑡

0

𝐾(𝑡 − 𝑠)𝜁(𝑠)Re𝜓𝑤(𝑠)d𝑠, 𝑡 ∈ [0, 𝑇],

where 𝛾𝑇(𝑡) = ∫ 𝑡

0
𝐾(𝑡 − 𝑠)1{𝑠≤𝑇}(𝜁(𝑠)Re𝜓𝑤(𝑠) − Re R̃𝑤(𝜓𝑤(𝑠)))d𝑠. By (Abi Jaber and El Euch,

2019b, Remark B.6) 𝛾𝑇 ∈ 𝐾 (recall (22)), and we can invoke (Abi Jaber and El Euch, 2019b, The-
orem C.1) to infer that Re𝜓𝑤 ≤ 0 in [0, 𝑇]. Given that 𝑇 was arbitrary, such an inequality holds in
the whole interval [0, 𝑇max), completing the first step of the proof.
Step II.Our goal here is to show that 𝑇max = ∞. Let us fix again a generic 𝑇 ∈ (0, 𝑇max). Taking

the imaginary part in (6) and (7) we have, on the interval [0, 𝑇],

Im𝜓𝑤 = 𝐾 ∗

[(
Re𝑤 −

1

2

)
Im𝑤 +

(
𝑏 + 𝜌

√
𝑐Re𝑤

)
Im𝜓𝑤 + 𝜌

√
𝑐 Im𝑤Re𝜓𝑤 + 𝑐Re𝜓𝑤 Im𝜓𝑤

+ ∫
ℝ+

(
𝑒Re(𝜓𝑤−Λ𝑤)⋅𝑧 sin (Im(𝜓𝑤 − Λ𝑤) ⋅ 𝑧) − Im𝑤

(
𝑒−Λ𝑧 − 1

)
− Im𝜓𝑤 ⋅ 𝑧

)
𝜈(d𝑧)

]
. (A.7)

Consider the function 𝑑 ∶ ℝ− × ℝ → ℝ defined as follows

𝑑(𝑥, 𝑦) =

{ 1

𝑦
∫
ℝ+

𝑒𝑥𝑧(sin (𝑦 𝑧) − 𝑦 𝑧)𝜈(d𝑧), 𝑦 ≠ 0

0, 𝑦 = 0
, 𝑥 ≤ 0.

Note that 𝑑 is continuous and nonpositive in its domain. Moreover, by construction

𝑦 ⋅ 𝑑(𝑥, 𝑦) = ∫
ℝ+

𝑒𝑥𝑧(sin (𝑦 𝑧) − 𝑦 𝑧)𝜈(d𝑧), (𝑥, 𝑦) ∈ ℝ− × ℝ.

To shorten the notation we define 𝜓𝑤 = 𝜓𝑤 − Λ𝑤. Using the function 𝑑 we rewrite (A.7) as

Im𝜓𝑤 +
𝜌+√
𝑐
Im𝑤 =

𝜌+√
𝑐
Im𝑤 + 𝐾 ∗

[(
Re𝑤 −

1

2
− ∫

ℝ+

(
𝑒−Λ𝑧 − 1 + Λ𝑧

)
𝜈(d𝑧) −

𝜌+√
𝑐

(
𝑏 + 𝜌

√
𝑐Re𝑤

))
Im𝑤

+

(
−𝜌−

√
𝑐Re𝜓𝑤 −

(
Λ +

𝜌+√
𝑐

)
∫
ℝ+

𝑧
(
𝑒Re𝜓𝑤⋅𝑧 − 1

)
𝜈(d𝑧) −

(
Λ +

𝜌+√
𝑐

)
𝑑
(
Re𝜓𝑤, Im𝜓𝑤

))
Im𝑤

+

((
𝑏 + 𝜌

√
𝑐Re𝑤

)
+ 𝑐Re𝜓𝑤 + ∫

ℝ+

𝑧
(
𝑒Re𝜓𝑤⋅𝑧 − 1

)
𝜈(d𝑧) + 𝑑

(
Re𝜓𝑤, Im𝜓𝑤

))(
Im𝜓𝑤 +

𝜌+√
𝑐
Im𝑤

)]

=∶
𝜌+√
𝑐
Im𝑤

+ 𝐾 ∗

[(
𝐶1 −

𝜌+√
𝑐

(
𝑏 + 𝜌

√
𝑐Re𝑤

))
Im𝑤 + 𝑓1(⋅)Im𝑤 +

(
𝑏 + 𝜌

√
𝑐Re𝑤 + 𝑓2(⋅)

)(
Im𝜓𝑤 +

𝜌+√
𝑐
Im𝑤

)]
,

which holds on [0, 𝑇]. In particular, note that 𝑓1 ≥ 0 and 𝑓2 ≤ 0 in [0, 𝑇]. We want to find a con-
tinuous function 𝑢 ∶ ℝ+ → ℝ+ such that |Im𝜓𝑤| ≤ 𝑢 on [0, 𝑇]. To do this, we argue by cases
on Im𝑤. In the following, we denote Λ̃ = max{𝜌−𝑐−1∕2, Λ}. All the claims regarding the sign of
solutions to linear Volterra equations are justified by (Abi Jaber & El Euch, 2019b, Theorem C.1).
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If Im𝑤 ≥ 0, then we can consider the unique, nonnegative, continuous solution 𝑙1 ∶ [0, 𝑇] →
ℝ+ of the linear equation

𝑙1 =
𝜌+√
𝑐
Im𝑤 + 𝐾 ∗

[||||||𝐶1 −
𝜌+√
𝑐

(
𝑏 + 𝜌

√
𝑐Re𝑤

)||||||Im𝑤 +
((
𝑏 + 𝜌

√
𝑐Re𝑤

)
+ 𝑓2

)
𝑙1

]
.

Since the function Im𝜓𝑤 +
𝜌+√
𝑐
Im𝑤 + 𝑙1 satisfies – in [0, 𝑇] – the linear equation

𝜒 = 2
𝜌+√
𝑐
Im𝑤 + 𝐾 ∗

⎡⎢⎢⎣2
(
𝐶1 −

𝜌+√
𝑐

(
𝑏 + 𝜌

√
𝑐Re𝑤

))+

Im𝑤 + 𝑓1 Im𝑤 +
((
𝑏 + 𝜌

√
𝑐Re𝑤

)
+ 𝑓2

)
𝜒
⎤⎥⎥⎦,

we deduce that Im𝜓𝑤 ≥ −𝑙1 −
𝜌+√
𝑐
Im𝑤 on [0, 𝑇]. Next, we introduce the unique, nonnegative,

continuous solution 𝑙1 ∶ ℝ+ → ℝ+ of the linear equation

𝑙1 =
𝜌+√
𝑐
|Im𝑤| + 𝐾 ∗

[||||||𝐶1 −
𝜌+√
𝑐

(
𝑏 + 𝜌

√
𝑐Re𝑤

)|||||||Im𝑤| + (
𝑏 + 𝜌

√
𝑐Re𝑤

)
𝑙1

]
(A.8)

and observe that 𝑙1 − 𝑙1 ≥ 0 on [0, 𝑇], because 𝑙1 − 𝑙1 solves on [0, 𝑇]

𝜒 = 𝐾 ∗
[
−𝑓2 𝑙1 +

(
𝑏 + 𝜌

√
𝑐Re𝑤

)
𝜒
]
.

Hence, Im𝜓𝑤 ≥ −𝑙1 −
𝜌+√
𝑐
|Im𝑤| on [0, 𝑇]. We now focus on the upper bound. Observe that

Im𝜓𝑤 − Λ̃ Im𝑤 = −Λ̃ Im𝑤 + 𝐾 ∗
[(
𝐶1 +

(
𝑏 + 𝜌

√
𝑐Re𝑤

)
Λ̃
)
Im𝑤 +

(
𝑏 + 𝜌

√
𝑐Re𝑤 + 𝑓2

)(
Im𝜓𝑤 − Λ̃ Im𝑤

)
+

((
Λ̃𝑐 + 𝜌

√
𝑐
)
Re𝜓𝑤 +

(
Λ̃ − Λ

)(
∫
ℝ+

𝑧
(
𝑒Re𝜓𝑤⋅𝑧 − 1

)
𝜈(d𝑧) + 𝑑

(
Re𝜓𝑤, Im𝜓𝑤

)))
Im𝑤

]
.

We then take the unique, nonnegative, continuous solution 𝑢1 ∶ [0, 𝑇] → ℝ+ of the linear
equation

𝑢1 = Λ̃ Im𝑤 + 𝐾 ∗

[||||𝐶1 + (
𝑏 + 𝜌

√
𝑐Re𝑤

)
Λ̃
||||Im𝑤 +

(
𝑏 + 𝜌

√
𝑐Re𝑤 + 𝑓2

)
𝑢1

]
.

We infer that 𝑢1 − (Im𝜓𝑤 − Λ̃ Im𝑤) ≥ 0 since Λ̃𝑐 + 𝜌
√
𝑐, Λ̃ − Λ ≥ 0, and 𝑢1 − (Im𝜓𝑤 − Λ̃ Im𝑤)

satisfies (on [0, 𝑇])

𝜒 = 2Λ̃ Im𝑤 + 𝐾 ∗
[
2
(
𝐶1 +

(
𝑏 + 𝜌

√
𝑐Re𝑤

)
Λ̃
)−
Im𝑤 +

(
𝑏 + 𝜌

√
𝑐Re𝑤 + 𝑓2

)
𝜒

−

((
Λ̃𝑐 + 𝜌

√
𝑐
)
Re𝜓𝑤 +

(
Λ̃ − Λ

)(
∫
ℝ+

𝑧
(
𝑒Re𝜓𝑤⋅𝑧 − 1

)
𝜈(d𝑧) + 𝑑

(
Re𝜓𝑤, Im𝜓𝑤

)))
Im𝑤

]
.
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To end, we introduce the unique, nonnegative, continuous solution 𝑢1 ∶ ℝ+ → ℝ+ of the linear
equation

𝑢1 = Λ̃|Im𝑤| + 𝐾 ∗

[||||𝐶1 + (
𝑏 + 𝜌

√
𝑐Re𝑤

)
Λ̃
|||||Im𝑤| + (

𝑏 + 𝜌
√
𝑐Re𝑤

)
𝑢1

]
, (A.9)

and since 𝑢1 − 𝑢1 satisfies the linear equation 𝜒 = 𝐾 ∗ [−𝑓2 𝑢1 + (𝑏 + 𝜌
√
𝑐Re𝑤)𝜒] on [0, 𝑇], we

conclude that 𝑢1 ≥ 𝑢1 on the same interval. Therefore, Im𝜓𝑤 ≤ 𝑢1 + Λ̃ Im𝑤 on [0, 𝑇].
In the case Im𝑤 ≤ 0 the argument is analogous, but the upper and lower bounds are inverted.

Specifically, with the same steps as the ones just carried out, we have −𝑢1 − Λ̃|Im𝑤| ≤ Im𝜓𝑤 ≤
𝑙1 +

𝜌+√
𝑐
|Im𝑤| on [0, 𝑇].

Therefore, defining the continuous function 𝑢 ∶ ℝ+ → ℝ+ by 𝑢 = 𝑙1 + 𝑢1 + (Λ̃ +
𝜌+√
𝑐
)|Im𝑤|,

we have

|Im𝜓𝑤(𝑡)| ≤ 𝑢(𝑡), 0 ≤ 𝑡 ≤ 𝑇. (A.10)

Taking the real part in (7) and using (A.1) we deduce that

Re𝜓𝑤 = 𝐾 ∗

[
1

2

(|Re𝑤|2 − Re𝑤
)
+

(
𝑏 + 𝜌

√
𝑐Re𝑤

)
Re𝜓𝑤 +

𝑐

2
|Re𝜓𝑤|2

−
1

2

(|Im𝑤|2 + 𝑐 |Im𝜓𝑤|2 + 2𝜌
√
𝑐 Im𝑤 Im𝜓𝑤

)
−

|||||∫ℝ+

𝑒Re𝜓𝑤⋅𝑧
(
cos

(
Im𝜓𝑤 ⋅ 𝑧

)
− 1

)
𝜈(d𝑧)

|||||
+∫

ℝ+

(
𝑒Re𝜓𝑤⋅𝑧

(
𝑒−ΛRe𝑤𝑧 − 1

)
− Re𝑤

(
𝑒−Λ𝑧 − 1

))
𝜈(d𝑧) + ∫

ℝ+

(
𝑒Re𝜓𝑤⋅𝑧 − 1 − Re𝜓𝑤 ⋅ 𝑧

)
𝜈(d𝑧)

]

on [0, 𝑇]. Since | cos(𝑥) − 1| = 1 − cos(𝑥) ≤ 𝑥2∕2, 𝑥 ∈ ℝ, by (A.10) we have

|||||∫ℝ+ 𝑒Re𝜓𝑤⋅𝑧
(
cos

(
Im𝜓𝑤 ⋅ 𝑧

)
− 1

)
𝜈(d𝑧)

||||| ≤ 1

2

(
∫
ℝ+

|𝑧|2𝜈(d𝑧))|||Im𝜓𝑤
|||2

≤
(
∫
ℝ+

|𝑧|2𝜈(d𝑧))(
𝑢2 + Λ2|Im𝑤|2), on [0, 𝑇]. (A.11)

Moreover, notice that by (A.10), since |𝜌| ≤ 1

1

2
||||Im𝑤|2 + 𝑐 |Im𝜓𝑤|2 + 2𝜌

√
𝑐 Im𝑤Im𝜓𝑤

||| ≤ 1

2

(|Im𝑤| +√
𝑐|Im𝜓𝑤|)2 ≤ |Im𝑤|2 + 𝑐𝑢2.

(A.12)
These facts coupled with (A.4) suggest to consider the linear equation

𝑙 = 𝐾 ∗

[
1

2

(|Re𝑤|2 − Re𝑤 − 2|Im𝑤|2) + ∫
ℝ+

(
𝑒−ΛRe𝑤𝑧 − 1 − Re𝑤

(
𝑒−Λ𝑧 − 1

))
𝜈(d𝑧) − 𝑐 𝑢2

−

(
∫
ℝ+

|𝑧|2𝜈(d𝑧))(
𝑢2 + Λ2|Im𝑤|2) + (

𝑏 + 𝜌
√
𝑐Re𝑤

)
𝑙

]
, (A.13)
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which has a unique, continuous, nonpositive solution 𝑙 defined on the whole ℝ+. At this point,
observe that the difference Re𝜓𝑤 − 𝑙 satisfies the linear equation

𝜒 = 𝐾 ∗

[(
𝑏 + 𝜌

√
𝑐Re𝑤

)
𝜒 +

𝑐

2
|Re𝜓𝑤|2 +(|Im𝑤|2 + 𝑐𝑢2 −

1

2

(|Im𝑤|2 + 𝑐 |Im𝜓𝑤|2 + 2𝜌
√
𝑐 Im𝑤Im𝜓𝑤

))
+ ∫

ℝ+

(
𝑒Re𝜓𝑤⋅𝑧 − 1 − Re𝜓𝑤 ⋅ 𝑧

)
𝜈(d𝑧) + ∫

ℝ+

(
𝑒Re𝜓𝑤⋅𝑧 − 1

)(
𝑒−ΛRe𝑤𝑧 − 1

)
𝜈(d𝑧)

+

((
∫
ℝ+

|𝑧|2𝜈(d𝑧))(
𝑢2 + Λ2|Im𝑤|2) − |||||∫ℝ+

𝑒Re𝜓𝑤⋅𝑧
(
cos

(
Im𝜓𝑤 ⋅ 𝑧

)
− 1

)
𝜈(d𝑧)

|||||
)]

.

It admits a unique, continuous solution on [0, 𝑇] which is nonnegative by (A.11), (A.12) and the
fact that 𝑒𝑥 − 1 − 𝑥 ≥ 0, 𝑥 ∈ ℝ. Since 𝑇 ∈ (0, 𝑇max) was chosen arbitrarily, we infer that

𝑙(𝑡) ≤ Re𝜓𝑤(𝑡) ≤ 0 and |Im𝜓𝑤(𝑡)| ≤ 𝑢(𝑡), 0 ≤ 𝑡 < 𝑇max.

Recalling that 𝑙 and 𝑢 are continuous onℝ+, and in particular bounded on every compact interval,
we conclude that 𝑇max = ∞, as desired.
Step III. Consider two global solutions 𝜓𝑤, 𝜓′𝑤 of (7), and let 𝛿 = 𝜓𝑤 − 𝜓′𝑤 and �̃� = 𝜓′𝑤 ∨ 𝜓𝑤.

Then, for every 𝑡 ≥ 0,

𝛿 (𝑡) = ∫
𝑡

0

𝐾 (𝑡 − 𝑠)

[(
𝑏 + 𝜌

√
𝑐 𝑤 +

𝑐

2

(
𝜓𝑤 + 𝜓′𝑤

)
(𝑠) + ∫

ℝ+

𝑧
(
𝑒(−Λ𝑤+�̃�(𝑠))𝑧 − 1

)
𝜈 (d𝑧)

)
𝛿 (𝑠)

+∫
ℝ+

𝑒(−Λ𝑤+�̃�(𝑠))𝑧
(
𝑒(𝜓𝑤−�̃�)(𝑠)𝑧 − 𝑒(𝜓

′
𝑤−�̃�)(𝑠)𝑧 − 𝛿 (𝑠) 𝑧

)
𝜈 (d𝑧)

]
d𝑠. (A.14)

We introduce the function 𝑘𝑤 ∶ ℂ− × ℂ− → ℂ defined for (𝑢, 𝑣) ∈ ℂ− × ℂ− by

𝑘𝑤(𝑢, 𝑣) =

{ 1

𝑣−𝑢
∫
ℝ+

𝑒(−Λ𝑤+𝑢∨𝑣)𝑧
(
𝑒(𝑣−𝑢∨𝑣)𝑧 − 𝑒(𝑢−𝑢∨𝑣)𝑧 − (𝑣 − 𝑢)𝑧

)
𝜈(d𝑧), 𝑢 ≠ 𝑣

0, otherwise
. (A.15)

We claim that 𝑘𝑤 is continuous on its domain. This is a consequence of an application of themean
value theorem to the functions 𝑓𝑧(𝑢) = 𝑒𝑢𝑧 − 𝑢𝑧, 𝑢 ∈ ℂ−, with the parameter 𝑧 ∈ ℝ+. Indeed,
using the inequality |1 − cos 𝑥| ≤ 𝑥2, 𝑥 ∈ ℝ,

|𝑓𝑧(𝑣) − 𝑓𝑧(𝑢)| ≤ 𝑧 sup
𝜉∈[𝑢,𝑣]

|||𝑒𝜉𝑧 − 1
||||𝑣 − 𝑢|

≤ 𝑧 sup
𝜉∈[𝑢,𝑣]

(|||𝑒Re 𝜉⋅𝑧 − 1
||| +√

2𝑒
1

2
Re 𝜉⋅𝑧

(1 − cos (Im 𝜉 ⋅ 𝑧))
1

2

)|𝑣 − 𝑢|
≤ 𝑧

((
1 − 𝑒(Re𝑢∧Re 𝑣)𝑧

)
+

√
2(|Im𝑢| ∨ |Im 𝑣|)|𝑧|)|𝑣 − 𝑢|, 𝑢, 𝑣 ∈ ℂ−, 𝑧 ∈ ℝ+.

(A.16)

Consequently, the continuity of 𝑘𝑤 follows from

|𝑓𝑧(𝑣 − 𝑢 ∨ 𝑣) − 𝑓𝑧(𝑢 − 𝑢 ∨ 𝑣)| ≤ |𝑧|2(1 +√
2
)|𝑣 − 𝑢|2, 𝑢, 𝑣 ∈ ℂ−, 𝑧 ∈ ℝ+. (A.17)
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Coming back to (A.14) we have (on ℝ+)

𝛿 = 𝐾 ∗

[(
𝑏 + 𝜌

√
𝑐 𝑤 +

𝑐

2

(
𝜓𝑤 + 𝜓′𝑤

)
(⋅) + ∫

ℝ+

𝑧
(
𝑒(−Λ𝑤+�̃�(⋅))𝑧 − 1

)
𝜈(d𝑧) + 𝑘𝑤

(
𝜓′𝑤(⋅), 𝜓𝑤(⋅)

))
𝛿

]
,

(A.18)
which is a linear equation admitting the zero function as its unique solution. Hence 𝜓′𝑤 = 𝜓𝑤 on
ℝ+, completing the proof of this step.
The fact that𝜓Re𝑤 isℝ−− valued follows from (A.10), because in this case𝑢 ≡ 0. This concludes

the proof of the statement in 3.1.
(ii) From (A.1) and (A.2) we deduce that Re R(𝑤, 𝑣) ≤ R(Re𝑤, Re 𝑣) for every 𝑣 ∈ ℂ−. Taking

the real part in (7) and recalling that – under Hypothesis 2.1 – the kernel 𝐾 is nonnegative on
(0,∞) we obtain

Re𝜓𝑤(𝑡) ≤ ∫
𝑡

0

𝐾(𝑡 − 𝑠)R(Re𝑤, Re𝜓𝑤(𝑠))d𝑠, 𝑡 ≥ 0.

We can then introduce a nonnegative function 𝛾 ∶ ℝ+ → ℝ+ defined by the relation

Re𝜓𝑤(𝑡) = −𝛾(𝑡) + ∫
𝑡

0

𝐾(𝑡 − 𝑠)R(Re𝑤, Re𝜓𝑤(𝑠))d𝑠, 𝑡 ≥ 0. (A.19)

Using (7), one can rewrite 𝛾 as

𝛾(𝑡) = ∫
𝑡

0

𝐾(𝑡 − 𝑠)(R(Re𝑤,Re𝜓𝑤(𝑠)) − Re R(𝑤, 𝜓𝑤(𝑠)))d𝑠, 𝑡 ≥ 0.

Thus 𝛾 ∈ 𝐾 by (Abi Jaber and El Euch, 2019b, Remark B.6). At this point we subtract (A.19) from
(7) (with Re𝑤 instead of 𝑤) to deduce that 𝛿 = 𝜓Re𝑤 − Re𝜓𝑤 satisfies

𝛿(𝑡) = 𝛾(𝑡) + ∫
𝑡

0

𝐾(𝑡 − 𝑠)(R(Re𝑤,𝜓Re𝑤(𝑠)) −R(Re𝑤, Re𝜓𝑤(𝑠)))d𝑠, 𝑡 ≥ 0. (A.20)

If we denote by �̃� = Re𝜓𝑤 ∨ 𝜓Re𝑤, we then need to study (on ℝ+)

R(Re𝑤, 𝜓Re𝑤) −R(Re𝑤, Re𝜓𝑤) =

(
𝑏 + 𝜌

√
𝑐Re𝑤 +

𝑐

2
(Re𝜓𝑤 + 𝜓Re𝑤) + ∫

ℝ+

𝑧
(
𝑒(−ΛRe𝑤+�̃�)𝑧 − 1

)
𝜈(d𝑧)

)
𝛿

+ ∫
ℝ+

𝑒(−ΛRe𝑤+�̃�)𝑧
(
𝑒(𝜓Re𝑤−�̃�)𝑧 − 𝑒(Re𝜓𝑤−�̃�)𝑧 − 𝛿𝑧

)
𝜈(d𝑧)

=∶ (𝑤1(⋅) + 𝑘Re𝑤(Re𝜓𝑤(⋅), 𝜓Re𝑤(⋅)))𝛿,

with 𝑘Re𝑤 as in (A.15). Going back to (A.20),

𝛿(𝑡) = 𝛾(𝑡) + ∫
𝑡

0

𝐾(𝑡 − 𝑠)(𝑤1(𝑠) + 𝑘Re𝑤(Re𝜓𝑤(𝑠), 𝜓Re𝑤(𝑠)))𝛿(𝑠)d𝑠, 𝑡 ≥ 0.

We can now apply (Abi Jaber and El Euch, 2019b, Theorem C.1) in order to conclude that 𝛿 ≥ 0

on ℝ+. This yields (8) and concludes the proof of 3.1. □
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APPENDIX B: PROOF OF PROPOSITION 3.5
This section is devoted to the proof of Proposition 3.5, a result which allows to price options on
the underlying asset 𝑆 with maturity 𝑇 > 0.

Proof. Let us define the function 𝑓 ∶ ℝ → ℝ by

𝑓(𝑚) = 𝔼
[
𝑒𝑋𝑇 −

(
𝑒𝑋𝑇 − 𝑒𝑚

)+]
𝑒
−
1

2
𝑚
= 𝔼

[
𝑒𝑋𝑇1{𝑋𝑇≤𝑚} + 𝑒𝑚1{𝑚<𝑋𝑇}

]
𝑒
−
1

2
𝑚
, 𝑚 ∈ ℝ. (B.1)

Denote by 𝜇𝑇 the probability distribution of 𝑋𝑇 onℝ and note that 𝑓 ∈ 𝐿1(ℝ), because, thanks to
Tonelli’s theorem,

∫
ℝ

𝑒
−
1

2
𝑚
[
∫
ℝ

(
𝑒𝑥1{𝑥≤𝑚} + 𝑒𝑚1{𝑚<𝑥}

)
𝜇𝑇(d𝑥)

]
d𝑚 = 4∫

ℝ

𝑒
1

2
𝑥
𝜇𝑇(d𝑥) = 4𝔼

[
𝑒
1

2
𝑋𝑇

]
< ∞. (B.2)

Therefore we can compute the Fourier transform of 𝑓 as follows

𝑓(𝜆) = ∫
ℝ

𝑒

(
−
1

2
+𝑖𝜆

)
𝑚
[
∫
ℝ

(
𝑒𝑥1{𝑥≤𝑚} + 𝑒𝑚1{𝑚<𝑥}

)
𝜇𝑇(d𝑥)

]
d𝑚

= ∫
ℝ

[
𝑒𝑥 ∫

∞

𝑥

𝑒

(
−
1

2
+𝑖𝜆

)
𝑚
d𝑚 + ∫

𝑥

−∞

𝑒

(
1

2
+𝑖𝜆

)
𝑚
d𝑚

]
𝜇𝑇(d𝑥) =

1
1

4
+ 𝜆2

Ψ𝑋𝑇
(
1

2
+ 𝑖𝜆

)
, 𝜆 ∈ ℝ,

where in the second equality we are allowed to use Fubini’s theorem by (B.2).

Since |Ψ𝑋𝑇( 1
2
+ 𝑖𝜆)| ≤ 𝔼[𝑒

1

2
𝑋𝑇 ] < ∞ and, by dominated convergence, 𝑓 in continuous onℝ, we

invoke the Fourier inversion theorem, see for instance (Rudin, 1987, Theorem 9.11), to obtain

𝑓(𝑚) =
1

2𝜋 ∫
ℝ

𝑒−𝑖𝑚𝜆
1

1

4
+ 𝜆2

Ψ𝑋𝑇
(
1

2
+ 𝑖𝜆

)
d𝜆, 𝑚 ∈ ℝ. (B.3)

Combining (B.1) and (B.3) and recalling Corollary 3.4 we deduce that

𝔼
[(
𝑒𝑋𝑇 − 𝑒𝑚

)+]
= 1 −

1

2𝜋 ∫
ℝ

𝑒

(
1

2
−𝑖𝜆

)
𝑚 1
1

4
+ 𝜆2

Ψ𝑋𝑇
(
1

2
+ 𝑖𝜆

)
d𝜆, 𝑚 ∈ ℝ. (B.4)

Now, for every 𝑘 ∈ ℝ, we can determine the price 𝐶𝑆(𝑘, 𝑇) of a call option written on 𝑆 with log
strike 𝑘 and maturity 𝑇. Indeed, taking𝑚 = 𝑘 − log(𝑆0) in (B.4) we have

𝐶𝑆(𝑘, 𝑇) = 𝔼
[(
𝑆𝑇 − 𝑒𝑘

)+]
= 𝑆0 −

1

2𝜋

√
𝑆0𝑒𝑘 ∫

ℝ

𝑒𝑖𝜆(log (𝑆0)−𝑘)
1

1

4
+ 𝜆2

Ψ𝑋𝑇
(
1

2
+ 𝑖𝜆

)
d𝜆

= 𝑆0 −
1

𝜋

√
𝑆0𝑒𝑘 ∫

ℝ+

Re
[
𝑒𝑖𝜆(log (𝑆0)−𝑘)Ψ𝑋𝑇

(
1

2
+ 𝑖𝜆

)]
1

1

4
+ 𝜆2

d𝜆,

which coincides with (15). The expression (16) for the price 𝑃𝑆(𝑘, 𝑇) of a put option with the same
underlying, log strike and maturity as before, follows from (15), Corollary 3.4, and the put-call
parity formula. This completes the proof. □
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APPENDIX C: PROOF OF THEOREM 5.1
This section is devoted to the proof of Theorem 5.1, a result providing estimates for themulti-factor
approximation of the Riccati-Volterra equations appearing in the Fourier-Laplace transformof the
log returns and VIX2.

Proof. Fix 𝑇 > 0. We first prove Point 5.1. Take 𝑤 ∈ ℂ such that Re𝑤 ∈ [0, 1] and 𝑛 ∈ ℕ, and
observe that |𝜓𝑤,𝑛| ≤ 𝑙1,𝑛 + 𝑢1,𝑛 − 𝑙𝑛 + (Λ̃ +

𝜌+√
𝑐
)|Im𝑤| on ℝ+. Here Λ̃ = max{𝜌−𝑐−1∕2, Λ} and

𝑙1,𝑛 [resp., 𝑢1,𝑛, 𝑙𝑛 ] is the unique, continuous solution of (A.8) [resp., (A.9), (A.13)] in Appendix A
with 𝐾𝑛 instead of 𝐾. (Abi Jaber and El Euch, 2019b, Corollary C.4) guarantees the existence of a
positive constant 𝐶1 = 𝐶1(𝜌, 𝑏, 𝑐, Λ, 𝜈) such that

𝑙1,𝑛(𝑡) + 𝑢1,𝑛(𝑡) +

(
Λ̃ +

𝜌+√
𝑐

)|Im𝑤| ≤ 𝐶1

(
1 + ∫

𝑇

0

|||𝐸𝑏+𝜌+√𝑐,𝑛(𝑠)
|||d𝑠

)|Im𝑤|, 𝑡 ∈ [0, 𝑇].

Then, recalling the hypothesis of boundedness for (∫ 𝑇

0
|𝐸𝑏+𝜌+√𝑐,𝑛(𝑠)|d𝑠)𝑛 and using (A.13),

another application of (Abi Jaber and El Euch, 2019b, Corollary C.4) provides the existence of
a constant 𝐶2 = 𝐶2(𝜌, 𝑏, 𝑐, Λ, 𝜈,𝐦, 𝐱, 𝑇) > 0 such that |𝑙𝑛(𝑡)| ≤ 𝐶2(1 + |Im𝑤|2), 𝑡 ∈ [0, 𝑇]. This
implies, given that 𝑛 ∈ ℕ is arbitrary, that

sup
𝑛∈ℕ

sup
𝑡∈[0,𝑇]

||𝜓𝑤,𝑛(𝑡)|| ≤ 𝐶3

(
1 + |Im𝑤|2), for some 𝐶3 = 𝐶3(𝜌, 𝑏, 𝑐, Λ, 𝜈,𝐦, 𝐱, 𝑇) > 0. (C.1)

Since the same argumentworks for𝜓𝑤, without loss of generality,we assume that the upper bound
in (C.1) holds also for 𝜓𝑤. Now, from (7) and (36) we have (on ℝ+)

𝜓𝑤 − 𝜓𝑤,𝑛 = (𝐾 − 𝐾𝑛) ∗ R
(
𝑤,𝜓𝑤,𝑛(⋅)

)
+ 𝐾 ∗

(
R(𝑤, 𝜓𝑤(⋅)) −R

(
𝑤,𝜓𝑤,𝑛(⋅)

))
, 𝑛 ∈ ℕ.

For every 𝑣 ∈ ℂ−, recalling the inequality 𝑒𝑥 − 1 − 𝑥 ≤ 𝑥2∕2, 𝑥 ≤ 0, and thanks to the computa-
tions in Appendix A (see (A.16))

|||||∫ℝ+ [
𝑒(𝑣−Λ𝑤)𝑧 − 𝑤

(
𝑒−Λ𝑧 − 1

)
− 1 − 𝑣𝑧

]
𝜈(d𝑧)

|||||
≤ 4

√
2

[
Λ2

2
(1 + |Im𝑤|) + |𝑣|2 + Λ2

(
1 + |Im𝑤|2)]∫

ℝ+

|𝑧|2𝜈(d𝑧).
Then by (C.1) and (6) we deduce that there exists a constant𝐶4 = 𝐶4(𝜌, 𝑏, 𝑐, Λ, 𝜈,𝐦, 𝐱, 𝑇) > 0 such
that

sup
𝑡∈[0,𝑇]

|||((𝐾 − 𝐾𝑛) ∗
(
R
(
𝑤,𝜓𝑤,𝑛(⋅)

)))
(𝑡)

||| ≤ 𝐶4

(
1 + |Im𝑤|4)∫

𝑇

0

|𝐾𝑛(𝑠) − 𝐾(𝑠)| d𝑠, 𝑛 ∈ ℕ.

(C.2)
In what follows, we denote by ℎ𝑛 = (𝐾 − 𝐾𝑛) ∗ R(𝑤, 𝜓𝑤,𝑛(⋅)), that is, the function that we
have just bounded. Next, computations analogous to those carried out to obtain the Volterra
equation (A.18) in Appendix A, allow us to write (on ℝ+)

R(𝑤, 𝜓𝑤) −R
(
𝑤,𝜓𝑤,𝑛

)
=

(
𝑏 + 𝜌

√
𝑐 𝑤 +

𝑐

2

(
𝜓𝑤 + 𝜓𝑤,𝑛

)
+ ∫

ℝ+

𝑧
(
𝑒(−Λ𝑤+𝜓𝑤,𝑛∨𝜓𝑤)𝑧 − 1

)
𝜈(d𝑧)
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+ 𝑘𝑤
(
𝜓𝑤,𝑛, 𝜓𝑤

)) (
𝜓𝑤 − 𝜓𝑤,𝑛

)
,

where 𝑘𝑤 is the continuous function in (A.15). Therefore, since |𝑘𝑤(𝑢, 𝑣)| ≤ (1 +√
2)(∫

ℝ+
|𝑧|2𝜈(d𝑧))|𝑣 − 𝑢| for every 𝑢, 𝑣 ∈ ℂ− (see (A.17)) and recalling (C.1)-(C.2), an application

of (Abi Jaber and El Euch, 2019b, Corollary C.4) yields

sup
𝑡∈[0,𝑇]

||𝜓𝑤(𝑡) − 𝜓𝑤,𝑛(𝑡) − ℎ𝑛(𝑡)|| ≤ 𝐶5

(
1 + |Im𝑤|6)∫

𝑇

0
𝐸
𝑏++𝜌+

√
𝑐+𝑐𝜈𝐶3

(
1+|Im𝑤|2),𝐾(𝑠)d𝑠

∫ 𝑇

0

|||𝐸𝑏++𝜌+√𝑐,𝐾(𝑠)
|||d𝑠

× ∫
𝑇

0

|𝐾𝑛(𝑠) − 𝐾(𝑠)|d𝑠, 𝑛 ∈ ℕ. (C.3)

for some 𝐶5 = 𝐶5(𝜌, 𝑏, 𝑐, Λ, 𝜈,𝐦, 𝐱, 𝑇) > 0 and where 𝑐𝜈 = 2(1 +
√
2)(∫

ℝ+
|𝑧|2𝜈(d𝑧)).

Notice that by (Gripenberg et al., 1990, Proposition 8.1, Chapter 9) and Hypothesis 2.1,
𝐸𝑏++𝜌+

√
𝑐+𝑐𝜈𝐶3(1+|Im𝑤|2),𝐾 ≥ 0. Consequently, thanks to (Abi Jaber and El Euch, 2019b, The-

orem C.1, Remark B.6), 𝐸𝑏++𝜌+√𝑐,𝐾 ≤ 𝐸𝑏++𝜌+
√
𝑐+𝑐𝜈𝐶3(1+|Im𝑤|2),𝐾 a.e. in ℝ+. Hence the ratio in

(C.3) is greater or equal to 1. Combining (C.3) with (C.2) yields (38).
In order to prove the final remark about the independence of the constant𝐶 in (38) with respect

to𝐦 and 𝐱, note that in the previous argument such a dependence is only due to 𝐶, the positive
constant given by the hypothesis controlling the sequence (∫ 𝑇

0
|𝐸𝑏+𝜌+√𝑐,𝑛(𝑠)|d𝑠)𝑛. When 𝑏 < 0,

the kernels −𝑏𝐾𝑛 inherit the property of complete monotonicity from 𝐾𝑛. If in addition 𝜌 < 0,
we can use (Gripenberg et al., 1990, Theorem 3.1, Chapter 5) to infer that ∫ 𝑇

0
|𝐸𝑏+𝜌+√𝑐,𝑛(𝑠)|d𝑠 =

∫ 𝑇

0
|𝐸𝑏,𝑛(𝑠)|d𝑠 ≤ |𝑏|−1 for every 𝑛 ∈ ℕ, and ∫ 𝑇

0
|𝐸𝑏++𝜌+√𝑐,𝐾(𝑠)|d𝑠 = ‖𝐾‖𝐿1([0,𝑇]). In particular, in

this case 𝐶 depends on 𝑇 only via the 𝐿1− norm of 𝐾 in [0, 𝑇] (see (C.1)-(C.3)).
The proof of Point 5.1 follows by an analogous argument. In this case we use the estimates

in (Bondi et al., 2024, Appendix B.1) and the fact that ∫ 𝛿

0
𝐾𝑛(𝑠)d𝑠 ≤ ∫ 𝑇∨𝛿

0
𝐸𝑏+,𝑛(𝑠)d𝑠 ≤ 𝐶, 𝑛 ∈ ℕ.

We also combine (Abi Jaber and El Euch, 2019b, Corollary C.4), the comparison result for linear
Volterra equations in (Beesack, 1969, Theorem 2), and the inequality

∫
𝛿

0

ℎ(𝑠)𝐾𝑛(𝑠 + 𝑡)d𝑠 ≤ ∫
𝛿

0

ℎ(𝑠)𝐾𝑛(𝑠)d𝑠, 𝑡 ≥ 0,

which holds also for 𝐾 by Hypothesis 2.1. □
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