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Abstract

We relate beta estimates at different frequencies to each other. Both the uncondi-

tional distribution of betas and the distribution conditional on their monthly estimate

become more dispersed and closer to a lognormal distribution as the estimation hori-

zon increases. Longer horizon beta estimates that assume either independently and

identically distributed returns or simple autocorrelation dynamics provide much bet-

ter estimates of longer horizon betas than short-horizon betas. Longer horizon betas

and mean holding period returns yield positive and reasonable market risk premium

estimates, even for characteristics-sorted portfolios that have been shown to pose a

challenge for the CAPM.
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1 Introduction

Beta as a measure of systematic risk is one of the key ingredients in asset pricing, cor-

porate finance, and many other related fields. Although it has its origins in the Capital

Asset Pricing Model (CAPM) as a measure of an asset’s risk viz-a-viz the market portfolio

return, multifactor models such as the Fama and French (1993, 2015) three- and five-

factor models employ similar risk measures—regressing asset returns on factor portfolios

such as the size and the value factor. Key in understanding the cross-section of expected

stock returns, beta measures are equally important in many practical applications such

as performance measurement and determining discount rates for company valuation and

investment decisions.

Although empirically betas are usually estimated using relatively short horizon (high

frequency) returns—say monthly—their application is often for longer horizon (lower fre-

quency) expected returns. For instance, in capital budgeting or valuations, one typically

uses annual expected cash flows and discounts these using annualized discount rates. In

performance evaluation, alphas are typically required for annualized returns, but based on

monthly observations. To the extent betas estimated at different horizons coincide, we can

limit ourselves to properly annualizing interest rates, equity premiums and other factor

risk premiums. However, if betas do not translate one to one from one horizon to another,

this requires additional adjustments when using for instance annual expected returns or

discount rates estimated from monthly returns.

Our task in this paper is a simple one and perhaps rather mundane. We analyze the

distribution of betas across different return horizons. To this end, we use a bootstrapped

sample of 4,600 stocks for 36,000 months. Based on this sample, we calculate simple

CAPM-type betas for horizons of one month up to five years. Our findings show that

longer horizon betas differ substantially from monthly ones. Whereas the distribution of

monthly betas appears to be rather close to a normal distribution (mean one, standard de-
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viation close to one half; at least for the left side), as the horizon increases, the empirical

distribution starts to resemble a lognormal distribution more and more. Indeed, the dif-

ference in betas occurs especially in the right half of the distribution. For instance, going

from monthly to annual betas, the 90%-percentile beta increases from 1.75 to 2.23, more

than 25% higher. Assuming an equity premium of five percent, this difference of about 0.5

translates into a difference in cost of capital of 2.5% per year. Such differences, although

smaller in the extreme percentiles, also occur for the distribution of longer horizon betas

conditional on the monthly betas.

Predicting the longer-horizon betas conditional on the monthly betas is the second goal

of this paper. Previous literature has shown the exact formulas for calculating different

horizon betas when returns are independently and identically distributed (iid; e.g., Lev-

hari and Levy, 1977, Handa, Kothari, and Wasley, 1989, Bessembinder, Cooper, and Zhang,

2024). Based on Stuart and Ord (1994, Chapter 10), we use a Taylor series approximation

of returns around their expected value to obtain a simple expression for longer horizon

betas conditional on a shorter horizon estimate. This also allows to come up with expres-

sions for longer horizon betas in case returns are not iid, but can be described by a vector

autoregressive (VAR) model or a univariate first-order autoregressive (AR(1)) model, for

example. Regressing longer horizon betas from our bootstrapped sample on candidate

betas, we find that betas implied by assuming either iid returns or univariate AR(1) pro-

cesses yield intercepts close to zero and slope coefficients close to one, and similarly so

for more complex VAR-models. However, especially the behavior of betas in the left tail of

the distribution cannot be captured by the simple iid or AR(1) processes, but require the

dynamics implied by a VAR model.

As a third and last objective of our paper, we study the performance of the CAPM using

mean holding period returns and betas for different horizons. For our 4,600 individual

bootstrapped stocks, cross-sectional regressions provide reasonable estimates of slope co-

efficients close to the in-sample equity premium and intercepts around 50% larger than
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the average risk-free rate. For holding period returns of two years and betas estimated

with two year returns, the estimates are most reasonable. At the same time, in terms of

explaining the cross-sectional variation in average returns, the CAPM performs best with

average five-year returns and five-year betas. In this case, the R2 is 54% versus 16% at the

one-year horizon.

We find similar horizon effects for characteristics-sorted portfolios. Most notably, we

show that increasing the return and beta horizon reduces the intercepts in cross-sectional

regressions and changes the slope coefficients from significantly negative or flat as found

in prior studies (see Fama and French, 1992; Jagannathan and Wang, 2007, among others)

to significantly positive. The estimates for the market risk premium are thereby reasonable

and mostly in the range of 5-8% per year for the ten-year beta horizon for the 25 portfolios

formed on size and book-to-market (B/M), size and momentum, and operating profitability

and investment.

Our analysis of long horizon betas using a bootstrapped sample is similar in nature to

the analysis in Fama and French (2018a,b) on long horizon mean returns and volatilities,

Anarkulova, Cederburg, and O’Doherty (2022, 2023) on international stock and bond re-

turns, and Aretz and Arisoy (2023) on long horizon skewness. We study the cross-section

of stock betas effectively focusing on the joint distribution of stocks and the market port-

folio, rather than returns at the stock or market portfolio level. We also deviate from Fama

and French (2018a,b) and focus, as Anarkulova et al. (2022, 2023) and Aretz and Arisoy

(2023), on the dynamics of returns as they deviate from being iid.

Our paper adds most directly to the growing literature on beta horizon effects. For

example, Gilbert, Hrdlicka, Kalodimos, and Siegel (2014) study daily, monthly, and quar-

terly betas and conclude that “daily data is bad for beta” because at high frequencies the

impact of systematic news is revealed only with a delay. Levi and Welch (2017) study best

practices for capital budgeting and emphasize the importance of applying Vasicek (1973)

shrinkage to daily beta estimates. Our study focuses on very long horizon betas and the
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shortest horizon that we consider is monthly. Our approximate formulas for horizon betas

that allow for non-iid returns add to the exact horizon formulas derived by Levhari and

Levy (1977), Handa et al. (1989), and Bessembinder et al. (2024).1 A related strand of the

literature considers multiple frequencies to test asset pricing models (e.g. Beber, Driessen,

Neuberger, and Tuijp, 2020; Brennan and Zhang, 2020; Chernov, Lochstoer, and Lundeby,

2022; Kamara, Korajczyk, Lou, and Sadka, 2016; Kothari, Shanken, and Sloan, 1995),

though none of those papers document a positive price of very long-horizon market risk

for characteristics-sorted portfolios.

The rest of the paper proceeds as follows. In the next section, we explain our boot-

strapped sample and various ways to calculate implied longer horizon betas from short

horizon ones. Section 3 analyzes the unconditional and conditional distribution of betas

across different return horizons. Section 4 further investigates the cross-sectional behavior

of betas and stock returns. Section 5 concludes.

2 Data and methodology

2.1 Data

Our basic data set consists of monthly individual stock returns for the period January 1962

to December 2022 from the Center for Research in Securities Prices (CRSP) of all common

shares (share code 10 or 11) listed on the NYSE, Nasdaq, and AMEX. Next to individual

stock returns, we use the value weighted market return as a proxy for our market index

and the risk-free rate, when excess returns are needed, as provided on Kenneth French’s

website.2

1In the conclusion of their study on mutual fund performance evaluation, Bessembinder et al. (2024)
remark (see page 27): “While the estimates we obtain appear reasonable, they do rely on simplifying as-
sumptions (including that returns are iid over time) that are violated in the data, and we anticipate that
future researchers may well be able to refine these methods." We provide such formulas that allow for non-
iid returns.

2See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Denoting the monthly total stock return for stock i as Ri,t+1 = Ri,t→t+1, we construct

K-month holding period returns (K = 1, 2, ..., 60) as

1 +Ri,t→t+K =
K∏
s=1

(1 +Ri,t+s) . (1)

These K-month holding period returns are the object of our analysis.

2.2 The bootstrap

We follow the stationary bootstrap proposed by Politis and Romano (1994) and described

by, for example, Sullivan, Timmermann, and White (1999) and Anarkulova et al. (2022),

adjusted to our setting. First, we select all available stocks for which there are at least ten

years of monthly returns available. The total available time-series of these stocks is our

universe of eligible stock-month observations.

Next, out of this universe of eligible observations, we randomly select 4,600 different

stocks (with replacement) to mimic the number of available stocks in the median month in

our sample period. For each stock, we then select blocks of returns with an average random

block length of six months. In unreported results, we verify that this random block length

sufficiently captures the dependencies in returns that drive our results. We repeat this

block sampling for each of the 4,600 stocks until we have a total series of 36,000 monthly

returns. Our main analysis is performed on this bootstrapped sample.

2.3 Descriptive statistics

In Table 1, we show that the stocks selected for our bootstrap analysis (Panel A) are similar

to the universe of eligible stocks (Panel B) in terms of number of available time-series

observations, average returns, standard deviations, and betas. Comparing the universe

of eligible stocks to all available stocks (Panel C) reveals that stocks with shorter return

histories that are excluded from our bootstrap analysis tend to have rather extreme average

6



returns (mostly low), extreme volatilities (mostly high), and extreme betas (mostly low).

However, except for the much wider dispersion of betas in the universe of all available

stocks (standard deviation of 1.37 vs. 0.51, reflecting fatter tails), the cross-sectional

distribution is rather similar to the one in the universe of eligible stocks and our sample

of stocks for the bootstrap. For example, the means and medians are very similar (1.10

vs. 1.11 to 1.12 and 1.05 vs. 1.08) and the 10th and 90th percentiles are a bit wider than

the 5th and 95th percentiles in the subsamples (0.10 vs. 0.36 and 2.11 vs. 2.00). In sum,

Table 1 suggests that the horizon effects we document in Section 3 are likely representative

for the majority of the firms in the CRSP file.

2.4 Beta comparisons

Our starting point is beta calculated from returns over different holding period horizons

K, using the returns as defined above:

β (K)im =
Cov [Ri,t→t+K , Rm,t→t+K ]

Var [Rm,t→t+K ]
. (2)

For monthly returns, we will sometimes simply write β (1)im = β. We refer to the estimated

β (K)im in our bootstrapped sample as the empirical betas.

Implied betas for the iid case

When returns are iid, we can use a Taylor series expansion of Ri,t+s and Rm,t+s around

their expected values µi and µm similar to Stuart and Ord (1994, Chapter 10) to obtain:

Cov [Ri,t→t+K , Rm,t→t+K ] = K (1 + µi)
K−1 (1 + µm)

K−1 σim, (3)
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with σim = Cov [Ri,t+1, Rm,t+1], the one-period (monthly) covariance. It follows readily

that the implied iid beta equals:

β (K)iid
im =

(1 + µi)
K−1

(1 + µm)
K−1

βim. (4)

Note that exact formulas for this beta are provided by, for example, Levhari and Levy

(1977), but we find this Taylor series approximation to work very well and it can easily be

extended to allow for autocorrelation in returns as we show below. We provide details of

our derivations in Appendix A.

When applying (4), we need to estimate the one-period expected returns µi and µm.

As a first estimate, we use the simple average (monthly) returns in our bootstrapped sam-

ple. this results in β (K)iid
im . As a second estimate, we impose the CAPM, such that in the

simulated sample we have

β (K)CAPM
im =

(1 + µi)
K−1

(1 + µm)
K−1

βim, (5)

where

µi = Rf + βim (µm −Rf ) . (6)

Implied betas with autocorrelations in returns

As a next step, we relax the assumption of iid returns in the approximation and assume

that R⊤
t+1 =

[
Ri,t+1 Rm,t+1

]
follow a first-order vector autoregressive (VAR) process:3

 Ri,t+1

Rm,t+1

 =

 µi

µm

+ Γ

 Ri,t − µi

Rm,t − µm

+

 ui,t+1

um,t+1

 , (7)

3Such a VAR process can be motivated by Boguth, Carlson, Fisher, and Simutin’s (2016) analysis with
heterogeneous information diffusion and leading and lagging stocks.
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where

Γ =

 γii γim

γmi γmm

 . (8)

Defining

Ω (K) =

{
1

2
K × IK +

K−1∑
j=1

(K − j)Γj

}
Var [Rt+1] , (9)

we can write

Cov [Ri,t→t+K , Rm,t→t+K ] = (1 + µi)
K−1 (1 + µm)

K−1 {Ω (K)im + Ω(K)mi} , (10)

where Ωim is the element in the first row and second column of the 2 × 2 matrix Ω. By

choosing i and m for the numerator and i = m for the denominator, the implied beta

follows readily. We refer to these betas as β (K)VAR
im .

Suppose Γ is diagonal, so there are no cross-autocorrelations. In that case, we have

Ω (K) =

1

2
K

 1 0

0 1

+
K−1∑
j=1

(K − j)

 γj
i 0

0 γj
m



 σii σim

σmi σmm

 (11)

and

Ω (K)im +Ω (K)mi =

{
K +

K−1∑
j=1

(K − j)
(
γj
i + γj

m

)}
σim. (12)

Using this restricted form in (10) gives us the implied beta when stock and market

returns each follow an AR(1) process with autocorrelation parameters γi and γm, respec-

tively. The betas implied by these univariate AR(1) processes will be referred to as β (K)AR
im.
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3 Empirical and implied betas for longer horizons

3.1 The unconditional distribution of betas

Table 2 shows our first main results. The table shows the distribution of empirical betas,

as in equation (2), for horizons K varying from one month to 60 months. These distribu-

tions are referred to as the unconditional distributions. For monthly returns (K = 1), the

median beta is 1.09 and the left side of the distribution is well approximated by a normal

distribution with mean one and standard deviation 0.4. For instance, for such a normal

distribution the 25% percentile would be 0.73 (0.77 in our sample), the 10% percentile

would be 0.49 (0.50 in our sample), and the 5% percentile would be 0.34 (0.36 in our

sample). For the right-hand side of the distribution, this is different: although the 75%

percentile is still rather close (1.27 in the normal distribution versus 1.43 in the sample),

the further we go into the tail the worse the normal approximation is. For the 90% per-

centile the numbers are 1.51 versus 1.75 and for the 95% percentile they are 1.66 versus

1.99. Thus, the empirical distribution of monthly betas appears to be more right-skewed

than the normal distribution.

The remaining rows of Panel A of Table 2 show the distribution of empirical betas for

longer holding period returns (horizons K). It is clear from Panel A that the distribution

of betas changes as the estimation horizon K increases. The median of the distribution

changes only slightly from 1.09 for a one month horizon to about 1.18 at the annual

horizon and 1.24 at the five-year horizon. For all percentiles below 50%, the betas tend

to systematically decrease with the horizon K, whereas for all percentiles above 50%

they systematically increase. At a horizon of one year, the 90% percentile shows a beta

that is almost 0.5 (27%) higher than the monthly one (2.23 versus 1.75), and at the

10% percentile the difference is 0.05 (10%). With an equity premium of five percent, a

difference in beta of 0.5 translates into a sizable difference in cost of capital of 2.5% per

year. As the horizon increases beyond one year, the differences with the monthly estimates
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become more extreme, especially for the right-hand side of the distribution.

As the horizon K increases, the distribution of empirical betas in Panel A also appears

to deviate more and more from the normal distribution and starts to resemble a lognormal

distribution. This finding, and the fact that below-median betas decrease with the horizon,

whereas above-median betas increase with the horizon, are in line with the approximation

in equations (4) and (6), at least when high (low) beta stocks are linked to high (low)

mean returns. From equations (4) and (6), it follows immediately that the distribution

of betas becomes more disperse with the holding period and the high (low) beta/mean

return stocks have increasingly higher (lower) betas.

3.2 The conditional distribution of betas

Panel B of Table 2 shows the distribution of empirical betas, conditional on the beta from

monthly returns (K = 1). To be precise, for each percentile reported in Table 2, we keep

the stocks that are within ±0.5% of that percentile and estimate the empirical betas for

longer horizons. For instance, for the 75% percentile, we estimate the longer horizon betas

for all stocks that are in the 74.5%-75.5% percentile and report the average betas of these

stocks. Thus, for each percentile, the different rows show the average beta for a holding

period K, conditional on the one-month beta being in a specific percentile q (±0.5%).

We first observe that the median beta (50% percentile) increases with the horizon K.

The pattern we observe is qualitatively consistent with a market beta equal to one and a

monthly median beta of 1.09, but not quantitatively since the equity premium we need to

match it would be six percent per month and thus too high. In the next section, we show

that the horizon betas calculated with a VAR(1) are able to yield the pattern we observe

for the median beta.

Second, looking at the extreme percentiles (q = 1%, 5%, 95%, 99%), we see that the

distribution of betas for longer horizons becomes less dispersed compared to Panel A.

This is a form of regression to the mean: conditioning on the monthly beta being at a
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specific percentile, we see fewer extreme betas for longer horizons. The low percentiles

for monthly betas, q = 1%, 5%, 10%, 25%, are somewhat puzzling at first sight, as the

betas tend to increase with the horizon for this percentile. This cannot be understood

from equations (4) or (6), and as we will show below we need more complicated return

dynamics as in the VAR system of equation (7) to generate this type of pattern.

Finally, we observe again that the distribution of betas appears to be close to a log-

normal distribution as the horizon increases. For instance, the percentiles of the five year

betas in Panel B are well approximated by a lognormal distribution with a (log) mean of

0.2 and a (log) standard deviation of 0.7.

The main interest in this paper is to estimate long horizon betas from short horizon

(e.g., monthly) betas—as this is the typical issue faced by analysts and researchers: de-

riving long term discount rates from short term beta estimates. The betas as presented in

Panel B of Table 2 are therefore the primary focus in what follows.

3.3 Explaining long horizon betas

We next proceed to analyze whether the different long horizon betas as discussed in Sec-

tion 2.4 can explain the observed behavior of betas in Panel B of Table 2. To save space,

we only present results that compare betas at the annual frequency conditional on those

observed at the monthly frequency. To this end, Panel A of Table 3 first presents three sets

of empirical (bootstrapped) betas. The first one shows the monthly betas as in Panel B of

Table 2 for the different percentiles. The second row presents the annual betas as in Panel

B of Table 2, but now for a bootstrapped sample with block length equal to one. This is a

sample that is by construction iid. The third row reports the same empirical annual beta,

but now based on our main bootstrapped sample with average block length equal to six

months. This row equals the annual conditional betas in Panel B of Table 2 and is our main

target for the various approaches to calculate horizon betas.

As Panel A of Table 3 shows, the fact that returns are not exactly iid (the difference
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between the two bootstrapped samples underlying the second and the third row) creates

differences in the behavior of longer horizon betas—in this case annual ones. Overall,

the non-iid sample is more right skewed. This is visible in the left side of the distribution

(q < 50%) that is less dispersed.

Panel B of Table 3 tries to match the observed conditional distribution of annual betas

in Panel A using the annual betas as implied by different return distributions. The first row

of Panel B uses equation (4), which assumes that returns are iid. The observed implied

betas, β (K)iid, closely match the annual betas in our iid sample in Panel A. This confirms

that the approximation underlying equation (4) works well. As the implied iid betas are

almost identical to the empirical ones in the iid sample in Panel A, they obviously fall short

in explaining the empirical annual betas in our non-iid sample in Panel A: the implied

iid betas do not capture the left side of the empirical distribution, nor the pattern in the

median and 75 percentile betas.

The second row of Panel B aims to capture the return dynamics by assuming inde-

pendent AR(1) processes for the individual stock returns and the market returns. That

is, in the VAR-system in equation (7) the cross-autocorrelations are assumed to be zero:

γim = γmi = 0. The AR(1) coefficients for the stocks and the market are estimated over

the same sample as the monthly betas and mean returns are calculated. At first sight, the

betas implied by the AR(1) returns appear to perform worse then the implied iid betas in

the first row of Panel B. Ignoring the lowest percentiles (q ≤ 10%), comparing the implied

AR(1) betas with the implied iid ones shows that the AR(1) betas systematically underes-

timate the iid ones by about 4 to 10 percent. Dividing the AR(1) beta by the empirical iid

one gives 0.90-0.96 for every percentile except for q = 25% (0.87).

We next analyze whether the full VAR model as in equation (7), that also allows for

non-zero cross-correlations, may do a better job in explaining annual (and longer horizon)

betas. The third row of Panel B of Table 3 shows the distribution of these betas. These

results show that the full VAR model performs best, although it tends to overestimate the
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betas in the highest percentiles. Overall the absolute difference between the implied VAR

betas and the empirical ones in Panel A hardly exceed ten percent. Also, looking across

the percentiles, the differences between the implied VAR betas and the empirical ones are

particularly small in the left tail. For example, the implied VAR beta at the first percentile

is 0.27 versus 0.28 empirically.

Finally, Panel C adds a CAPM restriction to the implied iid and VAR betas. We thus im-

pose that µi = Rf + βim (µm −Rf ). For the implied iid betas, adding the CAPM restriction

mostly seems to deteriorate the predictive ability for annual betas, although the differ-

ences are not that large. For the implied VAR betas, the CAPM restriction improves the

performance, as overall the differences between the implied and empirical betas become

smaller, especially in the extreme percentiles.

We next proceed by analyzing the explanatory ability of the different specifications in

a more systematic way. Specifically, given a candidate longer horizon beta, β (K)cand, we

estimate the regression:

β (K)im = a+ bβ (K)cand
im + ei, for i = 1, ..., 4600. (13)

If we explain the longer horizon betas well, we should find a = 0 and b = 1. In addition,

we should have a high value for the R2. Table 4 reports the results. As a benchmark, the

first three rows first report the estimates for a naive approach in which the candidate beta

is simply the one-month beta; that is, β (K)cand = β (1). We next report the estimates for

the different approaches in the same order as in Table 3.

Looking across models, we see that R2s decrease with the horizon K. In terms of R2

the best performing model is the VAR(1) model. Imposing the CAPM restriction in the last

two candidate betas in Table 4, the R2s decrease relatively fast with the horizon K. Con-

sidering the estimated intercept and slope coefficients a and b in Table 4 suggests that the

AR(1) and VAR(1) specifications—with or without the CAPM restriction—generally work

14



best. However, for horizons up to 24 months, the biases in the slope coefficient and the

intercept are less than 0.10 for all models except the naive one. For this model, the slope

coefficients are generally the furthest from one compared to other specifications, and the

intercepts are furthest from zero. For the other models, it is only for the longest horizons

that biases increase beyond 0.10, but only for the iid-CAPM model beyond 0.20. Thus,

based on these estimates, we do not prefer either of the three models over the others—

except that the naive one-month beta is easily beaten by all other models considered.

Adding a CAPM restriction to the iid specification increases the bias in both the intercept

and the slope coefficient away from zero and one respectively. This effect does not occur

with the VAR(1) specification, where the biases are similar when adding the CAPM restric-

tion. For the iid case, the bias from imposing the CAPM restriction is only visible at the

longest horizon though, and not severe. The cost of this higher bias may in practice be

acceptable compared to the benefit of imposing the CAPM restriction and not having to

estimate mean expected returns (which are often the object of interest).

4 Additional results

Having established the difference between monthly and longer horizon betas and ways

to approximate the longer horizon betas, we next provide two additional analyses on the

cross-section of betas and stock returns. First, we investigate the cross-sectional relation

between betas and mean returns at different horizons. Next, we analyze whether long

horizon betas are better able to explain average returns on characteristics-sorted portfolios

that have been notoriously difficult to capture by the CAPM at monthly horizons.

4.1 Cross-sectional regressions

As our analysis so far suggests that betas for different holding periods differ in their dis-

tribution and are all but perfectly correlated, they may contain different information on
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average returns in the cross-section of stocks. As mentioned earlier, and a prime motiva-

tion for this paper, the CAPM is a one period model but is silent about the length (horizon)

of one period. It may therefore very well be that the CAPM fails to explain the relation

between average returns and beta at one horizon, whereas it may be more successful at

other horizons.

To address this question, we further exploit our bootstrapped sample by running cross-

sectional regressions:

Ri,t→t+K = λK,L,0 + λK,L,1β (L)im + ui. (14)

We thus allow the horizon to be different for the dependent variable, the average hold-

ing period return Ri,t→t+K , and for the estimation horizon of the independent variable,

β (L)im. Table 5 reports the results, with the annualized estimated constant term in Panel

A, the annualized estimated slopes in Panel B, and the R2s in Panel C. Again, as we have

a very big bootstrapped sample (4,600 individual stocks), we refrain from reporting t-

statistics, but in this sample all coefficients are at least eight standard errors away from

zero, and except for two of them even more than ten standard errors.

Panel A shows that the intercept decreases with the holding period return horizon K

and first decreases and then increases with the beta horizon L. The highest annualized

estimate is λ1,60,0 = 11.99%, the lowest is λ60,24,0 = 5.59%. These numbers can be contrasted

with the average risk-free rate during the sample period, which is 4.39% per year. Thus,

the implied zero-beta rate λ0 exceeds the risk-free rate and all intercepts are at least one

percentage point higher than the average risk-free rate.

In the same vein, the slope coefficients in Panel B increase with the holding period K

for the mean returns and first increase and then decrease with the beta horizon L. The

annualized estimate of λ1,60,1, 2.68%, is now the lowest, whereas the annualized estimate

of λ60,24,1, 12.45%, is the highest. These numbers can be contrasted with the average

market risk premium of 6.60% during our sample period. Thus, the combination of aver-
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age 24 months returns with 24 months betas yields the combination of λ0 = 6.94% and

λ1 = 8.30% that are closest to the sample average risk-free rate (4.39%) and market risk

premium (6.60%). The fact that the intercept is off by about 2.5% is in part due to the

small firm premium: as our estimates do not differentiate between small and big stocks,

small stocks are overweighted in the bootstrapped sample. Note that the small firm pre-

mium in our sample is about 2.05%, similar in size to the missed intercept value.

For the R2s in Panel C, the story is slightly different: here the overall patterns is that

betas are best able to explain the cross-sectional variation in mean returns when the esti-

mation horizon of the betas and the holding period of the returns are long. For monthly

horizons, the R2 is 4.1% and this increases to almost 54.08% for the five year horizons.

The combination K = 24 and L = 24, our preferred choice for intercept and slope coeffi-

cient, shows a rather modest R2 of 30.25%. On the other hand, for the five year horizons,

K = L = 60, which yield the highest R2, the annualized intercept and slope are λ0 = 8.44%

and λ1 = 8.54%, both within reach of the time series averages discussed above, with an

additional size premium in the intercept.

We conclude that increasing the horizon, especially for the holding period returns, can

in part help improving the performance of the CAPM. For longer horizons, betas are better

able to explain the cross-sectional variation in average returns, and the estimated intercept

and slope in the cross-sectional regressions are usually more reasonable. Nonetheless, the

estimated intercepts are usually still sizable, in particular when compared to the average

risk-free rate. This may in part be due to a small firm effect—still leaving a puzzle to the

CAPM.

4.2 Characteristics-sorted portfolios

Next, we analyze whether long horizon betas are better able to explain returns on characteristics-

sorted portfolios that have been shown to pose a challenge for the CAPM. Since the time-

series for those portfolios is sufficiently long to calculate horizon betas, we can directly
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estimate

Ri,t→t+K = λK,L,0,t + λK,L,1,tβ (L)im + υi,t→t+K (15)

using monthly returns and overlapping data for horizons beyond one month.

We start with value-weighted returns on the familiar 25 size and B/M portfolios re-

trieved from Kenneth French’s website. Table 6 shows the average intercepts and slopes

that are annualized (geometric, not arithmetic) and the average adjusted R2 of the cross-

sectional regressions. For beta horizons up to one year (L = 1 to 12), we replicate the

well-known failure of the CAPM to explain the average returns on the size-B/M portfolios.

For example, the average intercept is 15.66% and the average slope is -1.27% in Table 6

for the annual beta and annual return horizon (L = 12 and K = 12). After subtracting the

average annualized risk-free return in our sample period, 4.47%, from the intercept, these

values appear very close to those obtained by Jagannathan and Wang (2007) of 11.31%

for the intercept and -0.56% for the slope coefficient using non-overlapping annual data

in the period from 1954 to 2003. The intercepts we obtain on beta horizons up to one-

year are thereby all positive, large, and highly statistically significant, while the slopes are

all negative and insignificant. The t-statistics accounting for autocorrelation in parenthesis

and accounting for autocorrelation and the errors-in-variables problem in brackets thereby

yield the same inference and have a similar magnitude.

Increasing the beta horizon from annual (L = 12) to five years (L = 60), reduces the

intercepts and switches the sign of the slopes from negative to positive. The slopes at

the five-year beta horizon are, however, still insignificant and of relatively low magnitude

(below 1%). To see whether this pattern accentuates for longer horizons, we also estimate

equation (15) for betas calculated using ten-year overlapping data. Those betas yield large

and significant slope estimates ranging from 6% to 9%, and the intercepts are around 7%,

which is higher but still close to the average risk-free return in our sample period.

To analyze the horizon effects of the size-B/M portfolio betas in greater detail, we
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present in Figure 1 four plots of horizon betas versus average annual excess return for

beta horizons ranging from one month to ten years.4 These figures clearly show that as

the horizon increases, the average excess returns are better explained by their beta, and

the slope coefficient in the graph changes from negative to a reasonable positive 7%. As

the beta horizon increases beyond one year in Panel (b), the betas of the growth portfolios

(e.g., small growth portfolio) decrease from around 1.5 at the annual horizon to around

0.5 at the ten-year horizon in Panel (d). There is a similar tendency of value portfolio

betas to increase from around one at the one-month horizon to above one at the ten-year

horizon. Such a behavior is consistent with our equation (4) in Section 2.4 in which the

betas grow with the horizon when the security’s return is larger than the one of the market

and decreases with the horizon when it is smaller.

The results in Table 6 and Figure 1 suggest that value portfolios indeed have higher

long-horizon betas and growth portfolios have lower long-horizon betas and that the av-

erage returns on those portfolios line up with their betas in a way that is more consistent

with the CAPM at long horizons. In the remainder of this section, we examine whether

this pattern generalizes to the 25 size and momentum portfolios and the 25 operating

profitability and investment portfolios from Ken French’s website.

Table 7 shows that this is indeed the case. In fact, for those portfolios the slope esti-

mates switch from being significantly negative for beta horizons up to one-year to signif-

icantly positive for five-year and ten-year beta horizons. The pattern is most pronounced

for the size-momentum portfolios for which the intercepts are even insignificant, but close

to the average risk-free rate, at the five year horizon. The scatter plots of horizon betas

versus average annual excess returns in Figure 2 document that winner and loser portfolios

in fact have betas that are larger than one and of similar magnitude at the one-month and

one-year horizon. At the five- and ten-year horizon, however, loser portfolios’ betas tend

to be far below one, whereas winner portfolios’ betas are far above one. Similarly, in Fig-

4The annual risk-free rate is from Liu and Wu (2021) available at https://sites.google.com/view/
jingcynthiawu/yield-data?authuser=0.
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ure 3, the beta of the portfolio of weak operating profitability and aggressive investment

decreases from above one to below one as the beta horizon increases from one-month to

ten-year. The beta of the portfolio of robust operating profitability and conservative invest-

ment instead increases from around one at the one-month horizon to around two at the

ten-year horizon. In sum, the evidence from this section suggests that average returns on

characteristics-sorted portfolios line up with long-horizon betas in a way that is consistent

with the CAPM.

4.3 Sub-samples and asset betas

To see whether our results are driven by specific sub-periods or possibly time-variation in

betas, we split our sample in two: until June 1992 and starting in July 1992. Table 8

reports the conditional distributions of β (K), conditional on β (1), as in Panel B of Table

2. To save space, we only report results for K = 1, 3, 12, 60. To facilitate comparison, we

report the results for the entire sample in Table 2 in Panel A of Table 8. Panels B and C are

for the two respective sub-samples.

Focusing first on β (1), we see that the distribution of betas is more disperse in the

second sub-sample than in the first sub-sample. For the early sample, the 5% and 95%

percentiles for β (1) are 0.41 and 1.85, respectively, whereas these percentiles are 0.28

and 2.19 in the recent sample. Indeed, the 5% and 95% percentiles of the recent sample

are close to the 1% and 99% percentiles of the early sample. The wider dispersion in the

recent sample also translates in the 1% percentile β (1) being close to zero: 0.03.

As the return horizon K increases, the difference in dispersion in the two sub-samples

further increases. Moreover, the behavior of betas in the left and right side of the dis-

tributions behave a bit differently in both sub-periods. For the right half, the difference

between β (1) and the longer horizon betas are usually bigger for the second versus the

first part of the sample, especially when we move further into the tail. For the left side

on the other hand, the differences are bigger (and more meaningful) in the first part of
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the sample. For instance, whereas for the recent sample the differences between β (1) and

β (12) are rather small (around 0.08 in absolute value) for the 5% and 10% percentiles,

for the early sample these differences are 0.15 (0.41 versus 0.56) and 0.19 (0.54 versus

0.73), respectively. Thus, even though in the iid case we expect the differences in β (K)

across horizons to be small, this is not what we find for the early sample, implying that

more involved dynamics than a simple iid model are needed.

In sum, even though the behavior of the conditional betas across horizons is similar in

the total sample and in the two sub-samples, we also observe notable differences in the

different sub-samples, in both halves of the distribution.

In the last piece of analysis, we analyze whether the horizon effects we document

are present for asset betas that are important for cost of capital calculations. To do this,

we calculate unlevered equity returns following Doshi, Jacobs, Kumar, and Rabinovitch

(2019) and compute the corresponding conditional beta. This analysis starts in February

1975 due to the more limited availability of leverage data necessary to calculate those

unlevered returns. We therefore also calculate the corresponding conditional percentiles

for the standard beta using only observations for which unlevered returns are available.

Moreover, we compute the conditional percentiles for beta calculated with respect to a

market return that is the asset weighted average of unlevered returns. Doshi et al. (2019)

use this variant of an asset beta in their asset pricing tests. Table 9 reports the results.

While there is no discernible horizon effect in asset betas for the left-hand side of the cross-

sectional distribution, the horizon effects on the right-hand side are large and economically

significant. In particular, for those percentiles the asset beta in Panel B and Doshi et al.’s

(2019) asset beta variant in Panel C both increase significantly with the horizon. For

example, in Panel B, asset beta increases by about 0.2 from the one-month to the annual

horizon at the 90% percentile (from 1.23 to 1.42). These results suggest that horizon

variations in asset betas translate into meaningful cost of capital variations.
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5 Conclusions

We show that betas estimated at different holding period horizons (return frequencies) de-

liver different distributions of betas, which has important implications for estimated costs

of capital and performance measures, for instance. Using a block bootstrapped sample of

4,600 stocks and 36,000 months from monthly CRSP data for the period 1962 to 2022, the

unconditional distribution of betas becomes more dispersed with the horizon and closer to

a lognormal distribution. But also for short horizons; that is, monthly, a normal distribu-

tion cannot describe both sides of the distribution well.

Conditioning on the one-month beta, the distribution of betas likewise becomes lognor-

mal at longer horizons and more dispersed. This behavior of the distribution is consistent

with a simple Taylor series approximation of longer horizon betas for iid sampled returns,

but not for non-iid samples (i.e., with block lengths larger than one). Using a Taylor-series

approximation of longer horizon betas assuming either iid returns or returns generated by

univariate AR(1) processes give a good first approximation of the longer horizon distribu-

tion, but a more involved VAR-system generally performs best.

We use the longer horizon betas to study the performance of the CAPM at different

return horizons and find that in cross-sectional regressions longer horizon betas can bet-

ter explain the cross-sectional variation of longer period holding returns, with reasonable

parameter estimates viz-a-viz the sample averages of the market risk premium and the

risk-free rate. For characteristics-sorted portfolios, the estimated market risk premium is

positive, realistic, and statistically significant for long-horizon betas, while it is negative

for short-horizon betas.
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A Appendix: derivation of the implied betas

Consider the beta for longer horizons, say K months. Using a Taylor series expansion of

Ri,t+k and Rm,t+k for k = 1, . . . , K around µi and µm as in Stuart and Ord (1994, Section

10.5) and assuming that returns are iid, we get

Cov

[
K∏
k=1

(1 +Ri,t+k) ,
K∏
k=1

(1 +Rm,t+k)

]
= K (1 + µi)

K−1 (1 + µm)
K−1 σim, (16)

where—similar to µ—σim is the covariance of the one-month returns Ri and Rm. Likewise,

Var

[
K∏
k=1

(1 +Rm,t+k)

]
= K (1 + µm)

2(K−1) σmm. (17)

Together, we have for the K-month CAPM β (K):

β (K)im =
K (1 + µi)

K−1 (1 + µm)
K−1 σim

K (1 + µm)
2(K−1) σmm

=
(1 + µi)

K−1

(1 + µm)
K−1

βim (18)

with β (1) = β.

A.1 Autocorrelation in returns

Suppose now that stock and market returns can be described by AR(1) processes:

Ri,t+1 = µi + γi (Ri,t − µi) + ui,t+1,

Rm,t+1 = µm + γm (Rm,t − µm) + um,t+1.

23



This means that we have for auto-covariances:

Cov [Ri,t+1, Rm,t+k] = Cov

[
Ri,t+1, ρ

k−1
m Rm,t +

k−1∑
s=1

ρsmum,t+s

]
= ρk−1

m σim,

Cov [Rm,t+1, Ri,t+k] = Cov

[
Rm,t+1, ρ

k−1
i Ri,t +

k−1∑
s=1

ρsiui,t+s

]
= ρk−1

i σim.

Armed with these expressions, and using Section 10.5 from Stuart and Ord (1994) again,

we get:

Cov [Ri,t→t+K , Rm,t→t+K ] = (1 + µi)
K−1 (1 + µm)

K−1

{
K +

K−1∑
j=1

(K − j)
(
ρji + ρjm

)}
σim.

This can be written as:

Cov [Ri,t→t+K , Rm,t→t+k] =

(1 + µi)
K−1

(1 + µm)
K−1

σim

{
−K +

1

1− γi

(
K − γi − γK+1

i

1− γi

)
+

1

1− γm

(
K − γm − γK+1

m

1− γm

)}
.

A.2 Cross-correlations

If we also allow for cross-correlations, we can use the vector-autoregressive (VAR) model:

Rt+1 :=

 Ri,t+1

Rm,t+1

 =

 µi

µm

+ Γ

 Ri,t − µi

Rm,t − µm

+

 ui,t+1

um,t+1

 , (19)

where

Γ =

 γii γim

γmi γmm

 . (20)

It seems natural to impose γmi = 0 (i.e., individual stock returns will not predict market

returns beyond the market itself). The auto-covariance matrices are then given by:

Cov [Rt+1,Rt+k] = Γk−1Var [Rt+1] . (21)
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Using

Ω (K) =

{
1

2
K × IK +

K−1∑
j=1

(K − j)Γj

}
Var [Rt+1] , (22)

we can use

Cov [Ri,t→t+K , Rm,t→t+K ] = (1 + µi)
K−1 (1 + µm)

K−1 {Ωim + Ωmi} , (23)

where Ωim is the im-element of the 2× 2 autocorrelation matrix Ω, referring to stock i and

the market m, or:

Ω =

 Ωii Ωim

Ωmi Ωmm

 . (24)

Similarly,

Var [Rm,t+K ] = Cov

[
K∏
k=1

(1 +Rm,t+k) ,
K∏
k=1

(1 +Rm,t+k)

]
, (25)

= (1 + µm)
2(K−1) 2Ωmm. (26)

Suppose Γ is diagonal, so there are no cross-correlations. In that case, we have

Ω =

1

2
K

 1 0

0 1

+
K−1∑
k=1

(K − k)

 γk
i 0

0 γk
m



 σii σim

σmi σmm

 (27)

and

Ωim + Ωmi =

{
K +

K−1∑
k=1

(K − k)
(
γk
i + γk

m

)}
σim. (28)
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Table 1:
Descriptive statistics for stocks in bootstrap sample versus all stocks
In this table, we compare the descriptive statistics of the stocks randomly selected for the bootstrap analysis
(Panel A) to the universe of eligible stocks (i.e., stocks with at least 120 monthly observations; Panel B) and
all available stocks (Panel C). All panels report the average (Mean), standard deviation (Std), and percentiles
of the following variables calculated at the stock-level: number of time-series observations T , average return
R̄, standard deviation σ, and beta calculated with monthly returns β. Panel B and C also report these
statistics for the number of stocks with a valid return in each month N . The total number of stocks is 4,600
in Panel A, 9,373 in Panel B, and 25,941 in Panel C. The sample period is from January 1962 to December
2022.

Horizon Percentile
Mean Std 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: Stocks used for bootstrap
T 262.5 138.0 121.0 126.0 133.0 161.0 219.0 316.0 453.0 596.5 732.0
R̄ 1.35% 0.96% -1.21% -0.23% 0.26% 0.90% 1.36% 1.86% 2.37% 2.79% 3.71%
σ 15.74% 7.95% 5.44% 6.93% 7.99% 10.36% 14.22% 19.23% 24.80% 29.26% 41.10%
β 1.12 0.51 0.11 0.36 0.50 0.77 1.08 1.42 1.75 2.00 2.59

Panel B: Stocks with at least 120 monthly observations
T 262.3 136.9 121.0 126.0 133.0 160.0 219.0 318.0 453.0 583.9 732.0
R̄ 1.35% 0.97% -1.37% -0.27% 0.28% 0.90% 1.35% 1.85% 2.38% 2.79% 3.86%
σ 15.62% 7.77% 5.42% 6.89% 8.01% 10.34% 14.15% 19.10% 24.68% 28.98% 40.10%
β 1.11 0.51 0.11 0.36 0.49 0.76 1.08 1.41 1.76 2.00 2.55
N 3359.0 1028.5 1172.8 1441.5 1688.7 2468.0 3634.5 4210.0 4460.9 4631.9 4770.9

Panel C: All stocks
T 127.3 133.1 4.0 12.0 17.0 35.0 79.0 172.0 306.0 407.4 633.0
R̄ 0.25% 4.37% -15.33% -7.41% -4.18% -0.41% 1.12% 1.98% 3.16% 4.30% 9.10%
σ 18.55% 12.03% 0.58% 6.17% 7.82% 11.18% 16.39% 23.02% 31.05% 37.76% 59.32%
β 1.10 1.37 -1.63 -0.16 0.10 0.58 1.05 1.53 2.11 2.66 4.62
N 4510.4 1500.6 1795.8 2039.0 2093.0 3614.5 4613.0 5707.5 6524.1 6900.4 7379.5
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Table 2:
Unconditional and conditional beta distributions
The table shows the percentiles of the cross-sectional distribution of beta as a function of the return horizon.
All data is obtained from randomly selecting 4,600 stocks and bootstrapping for each stock a sample of
36,000 monthly returns. Stocks and returns are drawn from common stocks listed on the NYSE, Nasdaq,
and AMEX in the CRSP file in the period from January 1962 to December 2022 that have at least ten years
of monthly data available. The bootstrap uses the Politis and Romano (1994) approach with random block
length equal to six months. Panel A reports the percentiles of empirical betas on the bootstrapped data
that are calculated with non-overlapping data for horizons beyond one month. Panel B reports averages
of empirical betas in bins taken in the ±0.5% neighborhood of the percentiles of 1m betas. Returns are
constructed from monthly returns as 1 +Ri,t→t+K =

∏K
s=1 (1 +Ri,t+s), for K = 1, 3, 6, 12, 24, 36, 60.

Horizon Percentile
1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: Unconditional beta distribution
1m 0.10 0.36 0.50 0.77 1.09 1.43 1.75 1.99 2.60
3m 0.13 0.39 0.54 0.84 1.18 1.57 1.99 2.27 3.08
6m 0.04 0.35 0.50 0.81 1.18 1.64 2.12 2.51 3.37
12m -0.05 0.27 0.45 0.78 1.18 1.69 2.23 2.72 4.16
2y -0.20 0.22 0.41 0.74 1.18 1.74 2.51 3.21 5.64
3y -0.26 0.19 0.37 0.71 1.20 1.86 2.83 3.77 7.45
5y -0.33 0.14 0.30 0.66 1.24 2.12 3.64 5.52 12.75

Panel B: Distribution of betas conditional on one-month percentile
1m 0.10 0.36 0.50 0.77 1.09 1.43 1.75 1.99 2.61
3m 0.24 0.44 0.58 0.85 1.17 1.60 1.83 2.21 2.91
6m 0.27 0.46 0.61 0.83 1.17 1.61 1.91 2.26 2.98
12m 0.28 0.50 0.60 0.82 1.20 1.59 1.94 2.28 3.18
2y 0.28 0.52 0.59 0.83 1.23 1.63 2.11 2.49 3.57
3y 0.27 0.54 0.62 0.86 1.29 1.80 2.24 2.68 4.50
5y 0.26 0.56 0.65 0.89 1.49 1.90 2.96 3.29 6.35
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Table 3:
Can long horizon betas explain observed betas?
The table analyzes the accuracy of different beta estimates at the annual horizon. Panel A contains empirical
betas on the one and twelve month horizon calculated with bootstrapped data using an average block length
of one (row 12m iid) and six months (row 1m and 12m). Panel B and C reports implied annual betas that
are calculated using the formulas provided in Section 2.4 and with inputs estimated on the bootstrapped
sample. Implied iid corresponds to β(12)iid

im (see equation (4)), implied VAR(1) is β(12)VAR
im (see equation

(10)), and implied AR(1) is β(12)AR
im. CAPM implied iid and VAR betas are calculated as Implied iid and

Implied VAR(1) and additionally impose the CAPM to get the expected stock return as in equation (6). The
whole table reports averages of these betas in bins taken in the ±0.5% neighborhood of the percentiles of
1m betas (as in Panel B of Table 2).

Beta Percentile
1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: Empirical betas
1m 0.10 0.36 0.50 0.77 1.09 1.43 1.75 1.99 2.61
12m iid 0.09 0.37 0.50 0.76 1.13 1.48 1.96 2.18 3.11
12m 0.28 0.50 0.60 0.82 1.20 1.59 1.94 2.28 3.18

Panel B: Implied betas
Implied iid 0.10 0.37 0.51 0.76 1.14 1.46 1.96 2.20 3.03
Implied AR(1) 0.09 0.34 0.48 0.72 1.10 1.44 1.87 2.15 2.94
Implied VAR(1) 0.27 0.49 0.64 0.91 1.27 1.68 2.14 2.47 3.27

Panel C: Implied betas with CAPM restriction
CAPM implied iid 0.09 0.34 0.48 0.75 1.10 1.47 1.86 2.15 2.87
CAPM implied VAR(1) 0.25 0.45 0.60 0.90 1.22 1.70 2.01 2.40 3.10
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Table 4:
Explaining long horizon betas
The table reports the estimates of the linear regression β (K)im = a+ bβ (K)

cand
im + ei of actual horizon betas

on candidate betas and an intercept. Candidate betas are those used in the previous table and the dependent
and independent variables are winsorized at the 1% level.

Candidate beta Horizon
K 3 6 12 24 36 60

1m a 0.06 0.04 -0.02 -0.14 -0.26 -0.61
b 1.06 1.10 1.18 1.35 1.56 2.15
R2 83.13% 69.88% 58.33% 47.25% 39.43% 27.40%

Implied iid a 0.07 0.07 0.06 0.04 0.06 0.14
b 1.04 1.05 1.04 1.04 1.01 0.96
R2 83.21% 70.53% 61.35% 56.93% 55.49% 50.89%

Implied AR(1) a 0.08 0.08 0.06 0.04 0.04 0.11
b 1.06 1.08 1.08 1.09 1.07 1.01
R2 84.95% 73.04% 64.39% 60.34% 58.99% 53.94%

Implied VAR(1) a -0.02 -0.04 -0.05 -0.06 -0.03 0.09
b 1.01 1.01 1.00 0.98 0.94 0.86
R2 95.74% 86.10% 75.81% 68.55% 64.79% 56.18%

CAPM implied iid a 0.08 0.08 0.08 0.09 0.12 0.20
b 1.04 1.05 1.06 1.09 1.12 1.22
R2 83.16% 70.01% 58.54% 47.52% 39.66% 27.52%

CAPM implied VAR(1) a -0.01 -0.03 -0.03 -0.03 0.00 0.07
b 1.01 1.02 1.02 1.04 1.06 1.16
R2 95.67% 85.44% 72.83% 58.66% 48.36% 32.49%
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Table 5:
Do horizon betas explain horizon returns?
The table reports the estimates of the cross-sectional regression Ri,t→t+K = λK,L,0 + λK,L,1β (L)im + ui of
average horizon returns on horizon betas. The return horizon varies through columns and the beta horizon
through rows. The dependent and independent variables in all regressions are winsorized at the 1% level.
Panel A and B report the annualized intercepts and slopes, and Panel C reports the adjusted R2.

Beta \ mean K=1 3 6 12 24 36 K=60 Average
Panel A: Intercept, λL,K,0

L=1 11.86% 11.13% 10.82% 10.79% 10.71% 10.67% 10.59% 10.94%
3 11.54% 10.15% 9.73% 9.67% 9.56% 9.32% 9.16% 9.88%
6 11.42% 10.03% 9.37% 9.19% 9.04% 8.82% 8.52% 9.48%
12 10.89% 9.43% 8.62% 8.16% 7.85% 7.50% 6.88% 8.47%
24 10.41% 8.96% 8.09% 7.52% 6.94% 6.52% 5.59% 7.72%
36 10.53% 9.17% 8.37% 7.82% 7.33% 6.65% 5.88% 7.97%
L=60 11.99% 10.88% 10.25% 9.85% 9.61% 9.42% 8.44% 10.06%
Average 11.23% 9.97% 9.32% 9.00% 8.72% 8.41% 7.87% 9.22%

Panel B: Slope, λL,K,1

L=1 4.45% 4.83% 5.15% 5.57% 6.73% 8.07% 10.86% 6.52%
3 4.24% 5.09% 5.48% 5.91% 7.02% 8.44% 11.07% 6.75%
6 4.22% 5.06% 5.62% 6.15% 7.28% 8.65% 11.31% 6.90%
12 4.52% 5.40% 6.08% 6.82% 8.06% 9.49% 12.22% 7.51%
24 4.60% 5.44% 6.13% 6.92% 8.30% 9.70% 12.45% 7.65%
36 4.19% 4.91% 5.51% 6.22% 7.48% 8.99% 11.58% 6.98%
L=60 2.68% 3.12% 3.50% 4.00% 4.89% 5.93% 8.54% 4.67%
Average 4.13% 4.84% 5.35% 5.94% 7.11% 8.47% 11.15% 6.71%

Panel C: R2

L=1 4.10% 4.41% 4.54% 4.59% 5.02% 5.36% 5.68% 4.81%
3 5.02% 6.61% 6.94% 6.97% 7.41% 7.96% 8.02% 6.99%
6 6.44% 8.47% 9.46% 9.78% 10.35% 10.89% 10.97% 9.48%
12 10.06% 13.13% 15.03% 16.39% 17.41% 18.14% 18.09% 15.46%
24 17.03% 21.75% 24.94% 27.59% 30.25% 31.13% 30.92% 26.23%
36 22.49% 28.16% 31.97% 35.33% 38.51% 41.75% 40.91% 34.16%
L=60 25.54% 31.54% 35.70% 39.92% 44.05% 46.86% 54.08% 39.67%
Average 12.95% 16.30% 18.37% 20.08% 21.86% 23.15% 24.10% 19.54%
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Table 6:
Do horizon betas explain horizon returns for characteristics-sorted portfolios?
The table reports the Fama and MacBeth (1973) estimates of the regression Ri,t→t+K = λK,L,0,t +

λK,L,1,tβ (L)im + υi,t→t+K of horizon returns on horizon betas for the 25 size and B/M sorted portfolios
from Ken French’s website. The return horizon varies through columns and the beta horizon varies through
rows. The reported average intercepts and slopes are annualized. The calculations use overlapping returns
for horizons beyond one month. In parenthesis, we report the t-statistics calculated with Newey and West
(1987) standard errors with lag length equal to K. In brackets, we report t-statistics that account for the
errors-in-variable problem by using standard errors calculated following Kroencke and Thimme (2021) us-
ing the generalized method of moments on the common sample with a lag length equal to the larger of K
and L for the Bartlett kernel. The returns are value-weighted. The sample period is from January 1962 to
December 2022.

Intercept, λ̄K,L,0,t Slope, λ̄K,L,1,t Average adjusted R2

Beta \ mean K=1 3 12 K=60 K=1 3 12 K=60 K=1 3 12 K=60
L=1 19.16% 17.92% 18.28% 18.07% -4.26% -3.12% -3.63% -8.39% 21.45% 24.00% 22.36% 17.76%

(3.66) (3.71) (3.74) (3.40) (-0.82) (-0.64) (-0.72) (-1.00)
[3.67] [3.76] [3.76] [3.59] [-0.83] [-0.64] [-0.74] [-1.07]

3 16.17% 15.13% 15.41% 15.28% -1.88% -0.83% -0.94% -2.35% 24.19% 27.45% 24.94% 20.46%
(3.81) (3.93) (3.89) (3.15) (-0.45) (-0.21) (-0.23) (-0.37)
[3.79] [3.94] [3.96] [3.31] [-0.44] [-0.21] [-0.26] [-0.44]

12 16.77% 15.61% 15.66% 15.59% -2.45% -1.27% -1.23% -3.07% 21.94% 25.32% 23.31% 18.82%
(3.82) (3.93) (3.88) (3.24) (-0.55) (-0.30) (-0.28) (-0.45)
[3.64] [3.50] [3.83] [3.19] [-0.50] [-0.24] [-0.28] [-0.42]

60 12.90% 13.80% 13.79% 13.31% 0.87% 0.30% 0.65% 0.93% 3.15% 3.52% 4.39% 5.95%
(2.96) (3.40) (3.47) (2.66) (0.31) (0.11) (0.20) (0.14)
[2.58] [2.80] [2.78] [2.71] [0.35] [0.20] [0.26] [0.15]

L=120 6.83% 7.45% 7.60% 6.17% 6.64% 6.44% 6.90% 9.48% 6.05% 7.55% 11.86% 16.45%
(2.03) (2.40) (2.64) (2.25) (3.74) (3.67) (3.58) (3.57)
[2.92] [3.27] [3.45] [2.18] [3.05] [3.07] [3.17] [3.39]
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Table 7:
Do horizon betas explain horizon returns for characteristics-sorted portfolios? Fur-
ther evidence
The table is constructed in the same way as Table 6 and repeats the underlying analysis using the 25 size and
momentum sorted portfolios in Panel A and the 25 operating profitability and investment sorted portfolios
in Panel B from Ken French’s website as test assets. The sample period is the same as in Table 6 except for
Panel B that uses returns starting only in July 1963.

Intercept, λ̄K,L,0,t Slope, λ̄K,L,1,t Average adjusted R2

Beta \ mean K=1 3 12 K=60 K=1 3 12 K=60 K=1 3 12 K=60
Panel A: Size and momentum sorted portfolios

L=1 26.55% 25.65% 24.74% 23.21% -9.65% -9.11% -9.70% -32.00% 14.95% 16.31% 17.70% 14.06%
(7.05) (7.55) (6.80) (8.63) (-2.45) (-2.47) (-2.45) (-5.90)
[6.41] [6.79] [6.23] [6.19] [-2.24] [-2.27] [-2.33] [-3.83]

3 20.41% 19.46% 19.00% 18.48% -5.19% -4.38% -4.34% -9.22% 17.05% 19.91% 19.77% 13.18%
(6.27) (6.65) (5.78) (5.84) (-1.49) (-1.32) (-1.22) (-2.06)
[5.92] [6.09] [5.35] [5.32] [-1.38] [-1.22] [-1.13] [-1.97]

12 17.44% 16.49% 15.87% 15.28% -3.27% -2.33% -1.77% -2.90% 13.90% 16.82% 16.05% 9.49%
(5.75) (6.03) (5.20) (4.95) (-0.94) (-0.69) (-0.49) (-0.68)
[5.11] [4.84] [4.90] [4.60] [-0.80] [-0.51] [-0.47] [-0.54]

60 2.84% 3.36% 3.19% -1.94% 11.80% 11.64% 12.42% 16.36% 11.58% 11.69% 16.61% 28.58%
(0.73) (0.94) (0.92) (-0.50) (4.45) (4.71) (4.36) (4.27)
[0.84] [0.99] [0.84] [-0.33] [2.68] [2.61] [2.69] [3.54]

L=120 6.05% 6.40% 6.56% 4.07% 7.09% 7.16% 7.66% 11.08% 15.13% 15.72% 23.11% 41.49%
(1.92) (2.26) (2.56) (2.04) (5.34) (5.72) (5.43) (4.85)
[2.75] [2.77] [2.48] [1.26] [2.62] [2.55] [2.52] [3.04]

Panel B: Operating profitability and investment sorted portfolios
L=1 22.42% 21.32% 20.40% 21.41% -8.18% -7.46% -7.65% -30.57% 10.06% 12.32% 12.70% 16.32%

(5.81) (5.87) (5.36) (4.69) (-2.06) (-1.92) (-1.85) (-2.84)
[6.10] [6.32] [5.51] [4.80] [-2.14] [-2.02] [-1.90] [-2.71]

3 19.89% 18.99% 18.25% 19.30% -6.22% -5.54% -5.52% -17.58% 9.93% 12.37% 12.56% 15.29%
(6.37) (6.51) (5.89) (4.88) (-1.90) (-1.73) (-1.63) (-2.61)
[6.41] [6.82] [5.97] [5.07] [-1.84] [-1.77] [-1.65] [-2.56]

12 20.23% 19.33% 18.41% 19.25% -6.63% -5.96% -5.81% -17.97% 8.88% 11.25% 11.88% 15.51%
(6.61) (6.72) (6.09) (4.97) (-2.03) (-1.85) (-1.69) (-2.60)
[5.85] [5.78] [6.26] [4.70] [-1.81] [-1.64] [-1.74] [-2.30]

60 7.54% 7.67% 7.51% 5.94% 4.75% 4.82% 5.33% 8.00% 1.48% 1.85% 2.92% 7.82%
(2.82) (3.23) (3.34) (2.63) (2.65) (2.78) (2.79) (2.59)
[2.74] [2.75] [2.65] [1.57] [1.48] [1.50] [1.65] [1.98]

L=120 7.28% 7.56% 7.61% 5.68% 4.77% 4.68% 4.96% 7.90% 2.96% 3.33% 6.03% 17.12%
(2.64) (3.10) (3.41) (3.29) (4.29) (4.59) (4.45) (4.20)
[3.36] [3.66] [4.38] [3.35] [4.65] [4.92] [5.89] [5.65]
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Table 8:
Conditional distributions for sub-samples
The table shows the percentiles of the cross-sectional distribution of beta as a function of the return horizon,
conditional on their one-month value β (1). All data is obtained from randomly selecting 4,600 stocks and
bootstrapping for each stock a sample of 36,000 monthly returns. Stocks and returns are drawn from all
common stocks listed on the NYSE, Nasdaq, and AMEX in the period from 1962 to 2022 that have at least
ten years of monthly data available in the respective sample. The bootstrap uses the Politis and Romano
(1994) approach with random block length equal to six months. Panel A reports the results for the entire
sample, Panel B for the sub-sample up to June 1992, and Panel C for the sub-sample starting in July 1992.

Percentile 1% 5% 10% 25% 50% 75% 90% 95% 99%
Panel A: Whole sample

1m 0.10 0.36 0.50 0.77 1.09 1.43 1.75 1.99 2.61
3m 0.24 0.44 0.58 0.85 1.17 1.60 1.83 2.21 2.91
12m 0.28 0.50 0.60 0.82 1.20 1.59 1.94 2.28 3.18
5y 0.26 0.56 0.65 0.89 1.49 1.90 2.96 3.29 6.35

Panel B: Sample until June 1992
1m 0.19 0.41 0.54 0.83 1.12 1.39 1.67 1.85 2.21
3m 0.35 0.53 0.63 0.90 1.24 1.53 1.79 2.07 2.36
12m 0.44 0.56 0.73 0.88 1.26 1.60 1.90 2.27 2.46
5y 0.46 0.55 0.80 0.83 1.45 2.24 2.94 4.51 4.13

Panel C: Sample from July 1992 onward
1m 0.03 0.28 0.40 0.66 1.03 1.46 1.90 2.19 2.75
3m 0.13 0.37 0.42 0.73 1.11 1.51 2.20 2.36 3.18
12m 0.19 0.36 0.32 0.73 1.26 1.58 2.57 2.50 3.74
5y 0.18 0.34 0.26 0.74 1.87 2.27 4.72 4.76 10.66
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Table 9:
Conditional distributions for unlevered returns
The table shows the percentiles of the cross-sectional beta distribution for levered and unlevered returns
as a function of the return horizon, conditional on their one-month value β (1). All data is obtained from
randomly selecting 4,600 stocks and bootstrapping for each stock a sample of 36,000 monthly returns.
Stocks and returns are drawn from all common stocks listed on the NYSE, Nasdaq, and AMEX in the period
from February 1975 to 2022 that have at least ten years of monthly data. The bootstrap uses the Politis and
Romano (1994) approach with random block length equal to six months. Unlevered returns are calculated
following Doshi et al. (2019) by scaling excess levered equity returns by 1− Li,t−1, where Li,t−1 is the ratio
of the book value of total liabilities to the sum of the book value of total liabilities and the market value of
equity. Panel A reports results for the beta of standard, levered returns using only observations for which
unlevered returns are available, and Panels B and C for unlevered returns. The betas in Panels A and B
are thereby with respect to standard market returns, whereas Panel C uses the asset-weighted average of
unlevered returns.

Percentile 1% 5% 10% 25% 50% 75% 90% 95% 99%
Panel A: Levered returns

1m 0.04 0.30 0.44 0.71 1.04 1.38 1.73 1.98 2.57
3m 0.16 0.38 0.54 0.78 1.18 1.52 1.89 2.18 2.89
12m 0.21 0.36 0.51 0.81 1.23 1.62 2.00 2.15 3.35
5y 0.33 0.32 0.30 0.81 1.76 2.74 2.60 3.02 9.25

Panel B: Unlevered returns
1m 0.01 0.05 0.09 0.28 0.56 0.85 1.23 1.49 2.03
3m 0.02 0.05 0.09 0.30 0.63 0.91 1.39 1.63 2.31
12m 0.03 0.04 0.09 0.25 0.59 0.91 1.42 1.73 2.71
5y 0.01 0.02 0.06 0.18 0.56 1.01 1.75 2.54 4.84

Panel C: Unlevered returns with asset-weighted unlevered market return
1m 0.03 0.11 0.19 0.63 1.19 1.79 2.44 2.90 3.83
3m 0.06 0.12 0.19 0.72 1.33 1.92 2.70 3.16 4.15
12m 0.05 0.10 0.20 0.67 1.36 1.98 3.14 3.48 5.00
5y 0.01 0.09 0.18 0.53 1.35 3.25 4.77 5.15 9.36
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Figure 1: Annual excess returns and horizon betas for size and B/M sorted portfolios
The figures plot the average annual returns in excess of the annual risk-free rate and their horizon betas of
the 25 size and B/M sorted portfolios. Each two digit number corresponds to a portfolio, whereby the first
digit refers to the size quintile (small=1 to big=5) and the second digit refers to the B/M quintile (growth=1
to value=5). The plots also contain a linear trend line in black font. Panels (a), (b), (c), and (d) use horizon
betas β(K) with K equal to 1, 12, 60, and 120 months, respectively. All portfolio returns are value-weighted.
Calculations use overlapping data for horizons beyond one month. The portfolio data is from Ken French’s
website and the annual risk-free return is from Liu and Wu (2021). The sample period is from January 1962
to December 2022.
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Figure 2: Annual excess returns and horizon betas for size and momentum sorted
portfolios
The figures plot average annual returns in excess of the annual risk-free rate and their horizon betas of the
25 size and momentum sorted portfolios. The construction of the plots and the underlying calculations and
data sources are the same as in Figure 1. The first digit refers to the size quintile and the second digit to the
momentum quintile (loser=1 to winner=5). The sample period is from January 1962 to December 2022.
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Figure 3: Annual excess returns and horizon betas for operating profitability and
investment sorted portfolios
The figures plot the average annual returns in excess of the annual risk-free rate and their horizon betas
of the 25 operating profitability and investment sorted portfolios. The construction of the plots and the
underlying calculations and data sources are the same as in Figure 1. The first digit refers to the operating
profitability quintile (weak=1 and robust=5) and the second digit to the investment (conservative=1 to
aggressive=5). The sample period is from July 1963 to December 2022.

40


