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1 Introduction

Electricity price forecasting (EPF) plays a major role for electricity companies as a fundamental entry for
trading decisions or energy management operations. As electricity can not be stored, electricity prices are
highly volatile which makes EPF a particularly difficult task.

The increase of renewable production in many countries
(RTE [2022], IEA [2022a]), the development of storage
devices or more generally demand response programs
(e.g. electrical vehicle smart charging Nassar et al. [2022],
electric water heater management Amabile et al. [2021],
Marin Moreno et al. [2023]) simultaneously entails a need
for good EPF and generates more complexity for price mod-
elling. Furthermore, prices can be affected by fortuitous
events such as COVID pandemic in 2020-2021 IEA [2021],
the stress corrosion issue which affected French nuclear
power plants in 2022 or the crisis of the gas markets trig-
gered by Russia’s invasion of Ukraine IEA [2022b]. These
last events have highlighted two main characteristics of the
electricity prices: high volatility and non-stasionnarity.

Figure 1: electricity prices in the French spot

market from 2018 to 2022

The literature on EPF is growing rapidly and most papers deals with point forecasts Weron [2014], Lago
et al. [2021] on day-ahead (spot) markets as the short-term power trading in Europe is the day-ahead market.
Models used for forecasting electricity prices are mainly statistical methods, encompassing the recent devel-
opments in machine learning. Statistical models are dominated by auto-regressive models and their variants,
in particular the state ot the art Lasso Estimated AutoRegressive (LEAR) model proposed by Uniejewski et al.
[2016] and recently used as state of the art benchmark in Lago et al. [2021], Tschora et al. [2022]. It consists in a
high dimensional ARX model where the fitting process is done by minimizing an elastic net regularization. The
high dimension (arround 250 parameters) comes from a large number of lags of prices and forecasts of vari-
able of interests (generation, zonal prices, consumption). As highlighted by Lago et al. [2021] pre-processing
of EP such as log transformations or more generally variance stabilizing transformations Uniejewski et al.
[2018] are a common practice to deal with heavy tailed distribution. Regarding non-stationarity of the prices,
regime switching ARX models are proposed in Nitka et al. [2021]. Marcjasz et al. [2018] propose to average a
set of point forecasts obtained from learning with different time windows to derive probabilistic forecasts.

1G. Dutot, M. Zaffran, O. Féron and Y. Goude, ”Adaptive probabilistic forecasting of French electricity spot prices in 2021“, working
paper, 2023 Dutot et al. [2023]
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Figure 2: Illustration of results of point forecasting methods. The

right figure comes from Ziel [2022]

The utilization of machine learning
tools Tschora et al. [2022] for electric-
ity price forecasting has grown over
the past decade. However, it has not,
at this time, shown significant im-
provements in EPF, as highlighted in
Ziel [2022]. The smallest errors in Elec-
tricity price forecasting stil remain in
the order of 10%. Let us note however
that the recent develoments of hybrid
methods with machine learning tech-
niques including fundamental mod-
eling Ziel [2022] may be promising to
imporve the performance of EPF.

Probabilistic forecasting, applied to electricity prices, has grown rapidly since 2016. We refer to Nowotarski
and Weron [2018] for an introduction and a review. The probabilistic description of future values is essential
for trading and more generally energy risk management Bunn et al. [2016].

2 Probabilisitc forecasting methods

2.1 Framework

We are interested in the (unknown) value of a variable Y (e.g. the future price of electricity, the future value of
power consumption...) and, for simplicity, we suppose in the following that Y ∈R. The objective is to build
forecats of Y from the available information noted X , and we assume we have a data set {(yn , xn);n = 1, . . . , N }
in order to develop estimation procedures.

In the classical point forecasting framework, the objective is to estimate a value Ŷ corresponding to
the best anticipation of the value of Y given all the available information X . In the case of probabilistic
forecasting, in the most general framework, the objective is to estimate a probability law P̂ such that, for
any subset S ∈ R, the probability that Y belongs to S is P̂(S ). This probability P̂ then represents all the
information we have on the value of Y . When this probablity is built from the available current information
X , it is noted P̂(.|X ).

In a simpler and more practical framework, probabilistic forecasting can be reduced to estimate some
characteristics of P̂.

• One can estimate a set of quantiles of P̂(X ): let us note the Q̂β(X ) the quantile of probability P̂ at a level
β, it corresponds to

P̂(Y ≤ Q̂β(X )|X ) = 1−β (1)

Such an estimated quantile Q̂β is expected to be greater than approximately 1−β of the realisations of
Y .

• One can built Prediction Intervals (PIs) for Y depending on the covariates X . Let α ∈ [0,1] be a miscover-
age rate. A PI at the 1−α level, noted Ĉα(X ) is such that

P̂(Y ∈ Ĉα(X )|X ) = 1−α (2)

Such an estimated PI is expected to contain approximately 1−α of the realisations. A natural choice for
the PI is Ĉα(X ) = [

Q̂α/2(X ) ; Q̂1−α/2(X )
]
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In both cases, probabilistic forecasting can be viewed as point forecasting tasks, where the objective is not
to estimate the future value Ŷ but instead quantiles Q̂β(X ) or the boundaries of intervals Ĉα(X ) which can
also be quantiles. That is why a lot of methods dedicated to probabilistic forecasting are called “quantile
regression” methods, referring to classical regression models used in point forecasting.

2.2 Review of some quantile regression methods

As said in the previous section, lots of quantile estimation methods are based on an adaptation of classical
point estimation. In the following we describe the most classical methods for estimating quantiles.

2.2.1 Linear Quantile Regression Models

Quantile Regression (QR) Koenker [2005] uses the same methodology as classical regression, but replaces
the quadratic loss by the pinball loss to forecast a conditional quantile of the distribution of Y given the
covariates X :

Q̂β(x) = argmin
Q∈Q

E
[
ρβ(Y −Q(X ))|X = x

]
,

where Q is the set of admissible function Q(x) (the class of regressors considered), and with the pinball loss
function defined as follows:

ρβ(u) =


(1−β)u, if u ≥ 0

−βu, if u < 0

Figure 3: Illustration of the

pinball loss

When the class of regressors Q is restricted to linear models, we speak of Quantile Linear Regression
(QLR). QRL-LASSO is used when we add specific LASSO techniques. Some other methods exist, e.g. Quantile
(tree based) Gradient Boosting (QGB) and can be easily implemented through the scikit-learn package
Pedregosa et al. [2011] in Python.

2.2.2 Quantile Generalized Additive Models

Generalized Additive Models (GAMs) Hastie and Tibshirani [1986] explain Y by a function of the set of
covariates X

Y =µ(X )+ε
with µ an unknown function to be estimated and ε a zero mean i.i.d noise from some exponential family.
GAMs assume that there exists a known link function g such that

g (µ(X )) =
J∑

j=1
f j (X )

where the f j are smooth functions. The function g can be considered as the identity function if we suppose
all the variables X and Y normmalized. The functions f j are cubic splines (i.e. polynomials of degree 3 joined
continuously at “knots”, see Wood [2006] for details). The estimation of GAMs is based on a (regularized)
mean squared error (MSE) criterion.

In order to use this kind of models for quantile estimation, one could replace the MSE criterion by the
pinball loss function in the estimation process as described before. However, Fasiolo et al. [2020] demonstrates
that the pinball loss is statistically suboptimal in this framework and proposes a procedure based on the
smooth Extended Log-F loss. The latter can be implemented through the R package qgam Fasiolo et al. [2021].
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2.2.3 Quantile Random Forests (QRF)

Meinshausen [2006] adapts Random Forests (RF) to the QR task. In the mean regression setting, a set of B

decision trees
(
µ̂b(·))B

b=1 is fitted on the training data
(
xn , yn

)N
n=1, predicting

µ̂b(x) :=
N∑

n=1
yn

1 (xn ∈ Lb(x))

#{k : xk ∈ Lb(x)}
,

with Lb(x) the leaf where x falls in the b-th tree. Then, the RF aggregates the B tree’s predictions to output
their average as unique prediction:

µ̂(x) := 1

B

B∑
b=1

µ̂b(x).

Meinshausen [2006] uses the same B decision trees and adapts the aggregation to provide an estimator of the
cumulative disribution function (cdf).:

F̂ (y |X = x) := 1

B

B∑
b=1

N∑
n=1
1{yn ≤ y}

1 (xn ∈ Lb(x))

#{k : xk ∈ Lb(x)}
.

The inverse of this estimated cdf is then computed to obtain the estimated conditional quantiles:

Q̂β(x) = inf{y : F̂ (y |X = x) ≥β}.

2.2.4 Extremal Random Forests (ERF)

ERF Gnecco et al. [2022] aims at providing estimates of conditional quantiles outside the range of the data by
modifying the estimated quantile function Q̂β(x) obtained with a GRF for the extreme values of β. Indeed,
classical QR techniques, and QRF, usually perform poorly for extreme values of β, due to the scarcity of
observed data in this tail region. By contrast, ERF seeks to approximate the cdf in the tails by a Generalized
Pareto Distribution (GPD). In Extreme value theory, given a high threshold u, the GPD is used to approximate
the distribution of the threshold exceedance

Y −u|Y > u ∼ Hγ,σ(y) = 1−
(
1+ γy

σ

)− 1
γ

+

with γ ∈R and σ> 0 (shape and scale parameters respectively). In this case, under mild assumptions and
when β→ 1, the conditional quantiles of Y |X = x are approximated by:

Qβ(x) ≈ Q̂β0 (x)+ σ(x)

γ(x)

[(
1−β

1−β0

)−γ(x)

−1

]
,

for β>β0 and with β0 some fixed threshold and Q̂β0 a GRF trained on the data. β0 is chosen small enough
so that it can be approximated by a classical GRF technique, but large enough to ensure the validity of the
previous approximation. ERF estimates the parameters σ̂ and γ̂ by minimising the negative log-likelihood
of each exceedance zn = max

(
yn −Qβ0 (xn) ; 0

)
, n = 1, . . . , N . The other quantiles (of levels β ∈ [0.5,β0]) are

estimated thanks to the initial GRF. Finally, the lower quantiles are estimated similarly: the vector Y is
multiplied by −1 and then it proceeds as above, training two other GRFs.

In practice, ERF method provided by the authors of Gnecco et al. [2022] needs a large enough training set
to provide predictions without any numerical errors.
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2.3 Conformal methods

Conformal Prediction (CP) Vovk et al. [1999], Papadopoulos et al. [2002], Vovk et al. [2005] builds PI around
any kind of prediction model. These intervals are valid (achieving marginal nominal coverage) in finite sample
under the only assumption of exchangeability of the data.

Figure 4: Illustrative scheme of conformal method principle.

Suppose that we have N random variables {(Xn ,Yn)}N
n=1. For a given miscoverage rate α ∈ [0,1], we aim at

building a marginally valid PI Ĉα of YN+1, i.e. Ĉα should satisfy:

P
(
YN+1 ∈ Ĉα(XN+1)

)≥ 1−α. (3)

To achieve this, Split Conformal Prediction (SCP) Papadopoulos et al. [2002], Lei et al. [2018] randomly
splits the N data points into a training set Tr and a calibration set Cal. A regression model µ̂ is then fitted on
Tr and used to predict on Cal to obtain a set of conformity scores SCal =

{
Sn := s

(
Xn ,Yn ; µ̂

)
, n ∈ Cal

}
. These

scores assess the conformity between the calibration’s observed values and the predicted ones: the smaller
the better. In the case of regression, they are usually computed using the absolute value of the residuals, i.e.

Sn := s
(
Xn ,Yn ; µ̂

)= |µ̂(Xn)−Yn |.

A corrected2 (1− α̃)-th empirical quantile of the conformity scores Q1−α̃(SCal) is obtained, to finally build the
prediction interval:

Ĉα := {
y : sµ̂(XN+1, y) ≤Q1−α̃(SCal)

}
.

In the standard regression case, it boils down to Ĉα(XN+1) = [
µ̂(NT+1)±Q1−α̃(SCal)

]
. This procedure is

guaranteed theoretically to satisfy Equation (3) for any model µ̂, any sample size T , as long as the calibration
and test data are exchangeable.

Proposed by Romano et al. [2019], Conformalized Quantile Regression (CQR) benefits simultaneously
from the adaptiveness of classical QR methods and from the theoretical guarantees ensured by CP. Instead
of training a mean regression model on the training set Tr, CQR requires to fit two conditional quantile
regression models q̂ℓ(·), q̂u(·)3. In this context, the conformity scores now quantify the error made by the
fitted PI Ĉ (x) := [q̂ℓ(x), q̂u(x)]. Precisely, St := s

(
X t ,Yt ; q̂ℓ, q̂u

)= max
{

q̂ℓ(X t )−Yt ; Yt − q̂u(X t )
}
. Accordingly,

the PI becomes
Ĉα(XN+1) = [

q̂ℓ(XN+1)−Q1−α̃(SCal) ; q̂u(XN+1)+Q1−α̃(SCal)
]

.

To account for the temporal aspect of time series, an online and sequential version of SCP is usually
considered, in which the split leading to Tr and Cal is not random, but constrained so that any point in Tr
occurs before any point in Cal Wisniewski et al. [2020], Zaffran et al. [2022].

2The correction 1− α̃= (1−α)(1+ 1
#Cal ) is needed to ensure finite sample validity, because of the inflation of the quantiles.

3Usually ℓ=α/2 and u = 1−α/2, but this is not necessary. Romano et al. [2019] suggests to choose these values by cross-validation, to
improve PI’s efficiency.

5



3 Evaluation

The main challenge of evaluating a probabilistic forecast is that the true distribution of the underlying process
cannot be observed, hence the impossibility to compare the estimated probability law P̂(.|X ) to the actual
law of the true value Y given X .

Yet, a lot of metrics are available (for PEPF, see Nowotarski and Weron [2018]) which can be categorized in
two classes: metrics for sharpness and metrics for reliability. A common paradigm in evaluating probabilistic
forecasts is "to maximize the sharpness of the predictive distributions, subject to reliability" Gneiting and
Raftery [2007]. Sharpness refers to how tightly the predictive distribution covers the true one, while reliability
measures the statistical consistency between the distributional forecasts and the observations (for example,
whether the 90 % prediction interval covers 90 % of the observations or not).

3.1 Reliability metrics

We first describe the common empirical coverage metric. Given α ∈ [0 ; 1] the coverage metric is defined as:

Covα = 1

N

N∑
n=1

In

with:

In =
{

1 if yn ∈Cα(xn)
0 otherwise

This metric is then the averaged number of observations yn which are in the predicted interval Cα(xn) .
One can also compute the Kupiec test Kupiec [1995], which checks for a given time n and miscoverage

rateαwhether P̂(In) = 1−α under the assumptions that the violations (i.e. the points external to the predicted
interval) are i.i.d according to a Bernoulli law of mean 1−α. The test rejects the null hypothesis of an accurate
prediction interval if the fraction of violations is statistically greater than α.

3.2 Sharpness metrics

To evalutate the sharpness of the quantiles forecasts, one can use the classical pinball score ρβ already
defined in section 2.2, which can be rewritten here: consider an estimated quantile Q̂β characterized by eq.
(1) and the realization y , the corresponding pinball score is:

ρβ(y −Q̂β) =
{

(1−β)(y −Q̂β) if y ≥ (y −Q̂β)
β((y −Q̂β)− y) otherwise.

In the case the probabilistic forecast reduces to the estimation of an interval (of miscoverage α), one can
measure the interval width: the smaller the interval, the better the interval forecat (provided that the interval
forecast satisfy reliability).

One also use the Winkler score Gneiting and Raftery [2007]. Consider a prediction interval Ĉα = [L̂α ; Ûα]
with Ĉα as defined in (2), the Winkler score is given by:

W i nkler (y,Ĉα) =


(Ûα− L̂α)+ 2
α (L̂α− y) if y < L̂α

(Ûα− L̂α) if y ∈ Ĉα

(Ûα− L̂α) 2
α (y −Ûα) if y > Ûα

Figure 5: Illustration of the Winker score

A common drawback of these two metrics is that they need either a given quantile or a given miscoverage
rate. The classical measure that is aggregated over all quantiles is the Continuous Ranked Probability Score
(CRPS). This score is originally described in terms of the predictive distribution function. Consider again the
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realization y and the estimated distribution function F̂ (u) = P̂(Y < u):

C RPS(F̂ , y) =
∫ ∞

−∞
(
F̂ (u)− 1{y≤u}

)2
du

Figure 6: Illustration of the CRPS function

Interestingly, the CRPS can be reformulated (to a multiplicative constant) as :

C RPS(F̂ , y) =
∫ 1

0
ρβ

(
y, F̂−1(β)

)
dβ

where F̂−1(β) actually corresponds to the predicted value at quantile β. By approximating this integral as an
Riemann sum, we are able to transform pinball scores over multiple quantiles into one single metric.

4 Illustration

In this section we propose an illustration of probabilisitic forecasting applied to the French electricity spot
prices. This illustration comes from the working paper Dutot et al. [2023] where a more exhaustive comparison
is done. For this illustration we will study the comparison of only two quantile regression methods and the
possible additional improvements of conformatlization approach. More precisely we consider the following
methods:

• Linear Quantile regressors (Linear)

• Quantile Random Forest (QRF)

• Conformal quantile regressor (CQR)

• Conformal Quantile regresor with increasing calibration set (OSSCQR) and online updating parameters
(OSSCQR-horizon)

The last method is an extension of the classical CQR methods in order to make the model more adaptive.
Also, all these methods were calibratated on different size of historical data from 90 days to 4 years preceeding
the forecast date.

We consider a dataset from 2016 to 2021. In order to forecast the electricity spot price at date D, we
consider the following explanatory variables:

• French day-ahead prices at day D-1 and D-7

• Daily Gas prices at day D-1 and front-month prices for Oil and Coal

• Residual load4 forecast at day D

• Available gereration capacity of french nuclear electricity at day D

• Power generation from all sources at D-2 and D-7

• EUR vs GBP and EUR vs USD exchange rate (last observed before closing)

• Total electricity exchange between France and its neighbors, and the exchange beween france and
Germany (observed at D-2) ;

• Dummy variables for considering French holiday, holiday bridges, Week-ends (or week day for Gams
and ERF), the time of year and a clock variable

4The residulal load is the power demand minus all the fatal generation (renewable production, fatal hydro...
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Figure 7: Exemple of results for linear quantile regression (up) and Quantile Random Forest (down): QR is
the classical methods, OSSCQR and OSSCQR-Horizon are extended conformal approaches.

Figure 7 gives an illustration of the results of linear quantile regression and Quantile random forests in
terms coverage, interval width and pinball loss for quantiles from 0.8 to 0.99. Concerning coverage, the zero
horizontal line corresponds to the targeted coverage for each quantile: getting negative ∆cover ag e implies that
the method is theoretically not valid in termes of reliability. Therefore, we can can oberve that none of the
methods reach the targetted coverage. However, For linear quantile regression the method OSSCQR-Horizon
seems to get closer to the reliability requirement, without increasing the interval width. For the quantile
random forest, the conformalization seems to not significantly improve the results.

5 Extension: towards aggregations techniques

As illustrated in Section 1, electricity price are highly volatile and non stationnary. which makes the proba-
bilistic forecast a very difficult task. There are several ways of research to try to improve the peformance of
probabilistic forecast of electricity prices.

Among them, the aggregation techniques are very promizing and have already proved their relevance for fore-
casting methods, because they allow to increase the adaptability and the efficiency of forecasts, by averaging
the forecast results of several models

q̂ Ag
α = 1

M

M∑
m=1

wm q̂m
α

where q̂m
α is the estimated α-quantile frome Model m and wm a weight associated to model m. The adapt-

ability of aggregation models comes from the effciency to update in real time the weights wm which are
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estimated in order to minimize a specific metrics. For Probabilistic electricity price forecasting, one can use
the metrics previously described in section 3.

Figure 8: Illustrative scheme of aggregation approach (left) and illustrative result of estimated weights’
evolution (right)

There is a need of huge research work to develop probabilistic forecasting methods adapted to (non
stationnary) time series, especially applied on electricity prices. Recent work on adaptive conformal methods
Zaffran et al. [2022] seem promising but miss, at this time, theoretical ensurements of convergence.
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