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Abstract

This paper proposes and investigates an optimal pair investment/pension policy for a

pay-as-you-go (PAYG) pension scheme. The social planner can invest in a buffer fund in or-

der to guarantee a minimal pension amount. The model aims at taking into account complex

dynamic phenomena such as the demographic risk and its evolution over time, the time and

age dependence of agents preferences, and financial risks. The preference criterion of the so-

cial planner is modeled by a consistent dynamic utility defined on a stochastic domain, which

incorporates the heterogeneity of overlapping generations and its evolution over time. The

preference criterion and the optimization problem also incorporate sustainability, adequacy

and fairness constraints. The paper designs and solves the social planner’s dynamic decision

criterion, and computes the optimal investment/pension policy in a general framework. A

detailed analysis for the case of dynamic power utilities is provided.

Keywords: Consistent Dynamic Utility, PAYG Pension Policy, Sustainability and Actuarial

Fairness, Demographic and Financial risk sharing, Stochastic Control.

Introduction

Pay-as-you-go (PAYG) systems in aging countries face serious challenges caused by both

the decrease in birth rates and an unprecedented increase in the life expectancy (see e.g.

[ABH02], [CDRV09], [Mas12]). Intergenerational solidarity is one of the main pillars of pay-

as-you-go (PAYG) pension plans, in which contributions paid by working participants are

redistributed to current pensioners, inducing risk sharing between generations. However, the
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sustainability of PAYG systems has become a key challenge for policymakers in aging popu-

lations. On the other hand, pension systems should provide adequate benefits for retirees as

well as an acceptable level of fairness between generations, as underlined in [AGDCBPD18].

Nevertheless, these features are not necessarily compatible in a genuine PAYG system which

imposes strict budget constraints.

Our goal is to propose an adaptive decision criterion in order to design an optimal policy

that is consistent with both sustainability and adequacy constraints. We consider a PAYG

system with defined contributions, in which the social planner has the flexibility to invest

to/borrow from a buffer fund and pensioners are guaranteed a minimum annuitized pension

amount. The buffer fund allows the social planner to invest in the financial market and

mitigate the demographic risk. An important challenge is to convey the complexity of the

problem, by taking into account key phenomena such as the demographic risk and its evolu-

tion over time, the time and age dependence of agents’ preferences, or financial risks. To the

best of our knowledge, these problems have only been tackled either partially or separately

in the literature.

We adopt a dynamic and continuous time approach, which incorporates the heterogeneity of

overlapping generations and the non stationary evolution of the population over time. When

annuitization of retirement is not considered (that is at retirement, individuals receive a

lumpsum, see e.g. [Gol08], [GG12]), retirees bear their own longevity risk. In this paper, the

uncertain future increase in the duration of life is taken into account by the social planner,

who redistribute the longevity risk across generations. [DMMS06] consider a population with

both fixed dependency ratio and retirement period. In [CDJP11], a model with 55 overlap-

ping generations is considered but individuals all die at the age of 80, and the population age

composition is stationary. [Boh01] and [DM15] consider models with stochastic demographic

shocks, but in two-period models. [AGD19] use a similar McKendrick-Von Foerster flexi-

ble population dynamics model as in this paper, however with deterministic age and time

dependent birth and mortality rates, while we consider stochastic demographic rates in our

setting. This allows us to take into account stylized fact of the population dynamics, such

as uncertain longevity or dependency ratio increases.

Part of the literature on PAYG pension design take on an macro, general-equilibrium view-

point (see e.g. [Boh01], [Boh06]). Alternatively to this general-equilibrium approach, another

trend in the literature considers an approach where demographic and wages processes as well

as the financial market are exogeneous. For instance, [GODCBPH16] and [AGD19] (see also

[HZ02]) study deterministic models of PAYG pension systems, in which the social planner

can invest in a buffer fund with known returns. The optimal pension policy is derived from

optimizing solvency indicators, with no adequacy constraints. [GG12] study the social plan-

ner’s optimal pension policy and investment strategy in a complete market, in a stochastic

model where the pension benefit is a lumpsum at retirement with a minimum guaranteed,

and with a sustainability constraint on the buffer fund at a given terminal time. Nevertheless,

2



it is obviously impossible to hedge perfectly the demographic and economic risks through

the financial market, that is why we consider in this paper an incomplete financial market

in which the social planner may invest/borrow. Besides, the sustainability of the pension

scheme is ensured by imposing a pathwise solvency constraint on the buffer fund (see also

[DGG11] for a similar assumption in the case of a fully funded pension system).

As the representative of past, present and future generations, the social planner should ag-

gregate preferences of all pensioners. This aggregation is the key in the fairness criterion

as this benevolent social planner aims at dealing with successive overlapping generations

fairly. Thus, the social planner’s decision criterion that appears in the optimization prob-

lem’s formulation is composed of the buffer fund utility and an aggregated utility which

should capture the heterogeneous preferences of different generations, thus is bound to be

complex ([EKHM17]).

The formulation of problem is related to the literature on optimal investment and consump-

tion with labor income, respectively corresponding in our setting to the buffer fund, pensions

and contributions. The literature usually states this optimization problem in a backward

formulation, see e.g. [HP93], [Cuo97], [EKJP98], or more recently [MS20] for a general set-

ting in incomplete markets. The backward approach has several drawbacks when considering

the framework of PAYG pensions. First it does not incorporate any changes in the agents’

preferences, or any uncertain evolution of the environment variables. Furthermore, in our

context of intergenerational risk-sharing for pensions, fixing a time-horizon is difficult and

can lead to optimal choices that depend on the time horizon, inducing artificial phenom-

ena such as the liquidating the fund at terminal time (see e.g. [GG12]). Finally, the social

planner should be able to identify his/her preference at any intermediate time, in order to

ensure consistency across time and generations. Introduced by Musiela and Zariphopoulou

[MZ08, MZ11], the framework of dynamic utilities is adapted to solve the issues raised above,

by proposing long-term, time-coherent policies. Dynamic utilities allow us to define adaptive

strategies adjusted to the information flow, in non-stationary and uncertain environment.

A framework for forward dynamic utilities of investment and consumption have been intro-

duced in [EKHM18]. The present paper is built upon [EKHM18] in order to obtain new

results in the presence of stochastic pathwise constraints on the buffer fund (wealth) and

pensions (consumption).

The population model, PAYG pension system with sustainability and adequacy constraints,

and incomplete financial market are introduced in Section 1. The social planner’s dynamic

decision criterion is formulated in Section 2, by introducing dynamic utilities defined on

stochastic domains. In particular, we give sufficient conditions on the local characteristics of

the dynamic utility for the utility to be well defined. The aggregation of pensioners’ prefer-

ences is introduced in Section 2.2. The main results of the paper are presented in Section 3.

We first introduce a natural consistency HJB-SPDE derived from the dynamic programming

principle, so that the decision criterion is consistent over time. Under this sufficient condi-
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1. The model

tion, the optimal constrained investment and pension policy is derived explicitly in Theorem

3.5. The remainder of the section is dedicated to proving this result. Section 4 details two

examples in the case of dynamic power utilities.

1 The model

All stochastic processes are defined on a standard filtered probability space (Ω,F ,F,P),

where the filtration F = (Ft)t≥0 is the natural filtration generated a n-dimensional Brownian

motion W , and that is assumed to be right continuous and complete.

1.1 Population dynamics

In order to include the stylized facts and non-stationarity of an aging population evolution,

we consider a population structured continuously in age and time. At time t, the number of

individuals of age a is denoted by n(t, a), and the demographic (birth and mortality) rates

are modeled by a family of F-adapted nonnegative processes (d(·, a))a≥0 and (b(·, a))a≥0,

uniformly bounded and continuous in age.

Between a small period of time [t, t + dt], a (random) proportion d(t, a)dt of individuals

of age a die, while individuals of age a give birth to b(t, a)n(t, a) individuals. Formally, the

population dynamics is described by a partial differential equation with stochastic coefficients,

generalizing the standard McKendrick-Von Foerster equations:

(∂t + ∂a)n(t, a) = −d(t, a)n(t, a), (1.1)

n(0, t) =

∫ ∞
0

b(t, a)n(t, a)da. (1.2)

A detailed analysis of such equations can be found e.g. in [Hop75], [Web85] or [Bou16]. In

particular, if the initial number of individualsN0 =
∫∞

0 n(0, a)da is finite, then the population

stays finite over time.

This model allows for a more realistic description of the population than in standard discrete

time overlapping generation models. Time-dependent stochastic birth and mortality rates

can describe the uncertain aging of the population, by taking into account phenomena such

as the decrease of mortality rates over time or birth rates declines. In addition, the modeling

can be extended to include intra-cohort heterogeneity or exogenous population flows. Finally,

we consider in this paper a single-sex model only for ease of notation.

Workers are assumed to enter the work force at fixed age ae, and retires at age ar. Thus, the

number of pensioners at time t is

N r
t =

∫ ∞
ar

n(t, a)da, (1.3)
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1. The model

social and the number of workers is

Nw
t =

∫ ar

ae

n(t, a)da. (1.4)

In the following, all results can be straightforwardly extended when the retirement age ar(t)

(or ae(t)) depends on time. For ease of notations, the time variable is omitted in the following.

1.2 Pension system

We define below the cumulative contribution rate process Ct payed by the workers at time

t, and the cumulative pension rate process Pt received by the pensioners at time t. In what

follows, we assume that individuals in a given cohort (of age a at time t) receive the same

wage and pension amount. In the case of heterogeneity inside the cohort, the age-dependent

wage and pension processes can be interpreted as the average amounts over the cohort.

Contribution process The wage process of any worker of age a ∈ [ae, ar] at time t

is assumed to be an exogenous F-adapted process (et(a)). All workers contribute a fixed

proportion αc ∈ [0, 1] of their wage in order to finance pensions of current pensioners. The

cumulative contribution process (Ct) is thus defined by

Ct = αc

∫ ar

ae

et(a)n(t, a)da, ∀ t ≥ 0. (1.5)

Il the wage does not depend on the age, then Ct = αcetN
w
t .

Pension process and adequacy constraint In a strict PAYG system, the cumulative

pension amount Pt to be paid at time t is only financed by the current contributions Ct,

inducing the budget constraint:

Ct = Pt, ∀t ≥ 0.

In the case of defined contributions that we consider here, the worker’s contributions are

fixed, and thus pensioners bear all the economic (wages) and demographic risk. For in-

stance, the retirement income can be drastically reduced following a decrease in the working

population or an increase of the retired population. In order to achieve a minimum adequacy

of retirement incomes, we consider the following pension mechanism:

Each pensioner of age a at time t receives a pension amount pt(a) depending on her age,

with

pt(a) = pmint (a)ρt, a ≥ ar, t ≥ 0. (1.6)

pmint (a) corresponds to a minimum pension amount guaranteed to pensioners (see examples

below) and (ρt) represents a global adjustment with respect to the benchmark, which is the
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1. The model

same for all pensioners living at time t. The total pension amount is thus

Pt = ρtP
min
t , with Pmint =

∫ ∞
ar

pmint (a)n(t, a)da. (1.7)

The pension process should satisfy the adequacy constraint (1.8) below:

∀t ≥ 0, ∀a ≥ ar, pt(a) ≥ pmint (a) a.s., or equivalently ρt ≥ 1 a.s. (1.8)

In the following, two examples are studied as an application of the general results:

Example 1. When pmint (a) ≡ pmint , all pensioners at time t receive the same pension amount

pmint ρt and the minimal cumulative pension amount is Pmint = N r
t p

min
t . For example, pmint

can be indexed on current wages, contributions, or any other indicator.

Example 2. A more realistic choice for pmin is to take a base pension computed at retirement

date, multiplied by an indexation factor:

pmint (a) = pret(ar + t− a) e
∫ t
ar+t−a λsds. (1.9)

• pret(s) corresponds to the base pension amount received by an individual retiring (i.e. of

age ar) at time s. Then pret(ar + t−a) is the pension amount received at retirement time by

an individual of age a at time t. For instance, pret(s) can be a proportion αp of the average

yearly income of an individual retiring at time s. Then

prep(s) = αp
cs(ar)

ar − ae
, with ct(a) =

∫ t−a+ar

t−a+ae

e
∫ t
u rsdseu(a+ u− t)du. (1.10)

ct(a) is the present value of wages earned by an individual’s of age a at t.

One can also take instead the average income over the last h years before retirement, then

pret(s) = αp

∫ s
s−h e

∫ s
u rvdveu(a+u−t)du

h .

• (λt) is the indexation rate adjusting pension benefits. The indexation rate takes into

account changes in prices or wages, using for example the Consumption Price Index. It can

be used to maintain the sustainability of the pension system is case of a demographic shock,

such as in [AGDCBPD18].

The adequacy constraint (1.8) yields a liquidity issue for the PAYG system, since the

minimum pension amount Pmint is not covered by the workers contributions when Pmint ≥ Ct.
We thus consider a system where the social planner can invest (or borrow) at each time the

amount Ct − Pt in (from) a buffer fund, hence sharing the demographic risk between the

different generations.
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1. The model

1.3 Buffer fund

Financial market As the demographic (and economic) risk is obviously not fully trans-

ferable to financial markets, We an incomplete Itô market , with short rate (rt) and d ≤ n

risky assets. The price process S = (Si)i=1,...,d of the risky assets is defined by

dSit = Sit(µ
i
tdt+

n∑
j=1

σi,jt dW
j
t ), i = 1, · · · , d. (1.11)

The d× n volatility matrix (σt) is assumed of full rank (that is (σt
trσt) is invertible, where

trσt is the transposed matrix). The d-dimensional risk premium vector is denoted by (ηt),

where ηt = trσt.(σt
trσt)

−1(µt−rt1d). We assume that
∫ T

0 (|rt|+‖ηt‖2)dt <∞, for any T > 0,

P.a.s.

ηt is in the vector subspaceRt = trσt(Rd) of Rn. In what follows, for any Rn-valued stochastic

process (Xt), we denote by XR the process such that for all t, XRt is the orthogonal projection

of Xt onto Rt. Similarly X⊥t denotes the orthogonal projection of Xt onto the orthogonal

vector subspace R⊥t .

Investment in the buffer fund On this (incomplete) market, the social planner man-

ages a buffer fund that aims to absorb demographic and economic shocks. The dynamics of

the fund can be consider as the financial wealth of a single agent with a labor income (or

endowment) Ct = αc
∫ ar
ae

et(a)n(t, a)da, and consumption process Pt. The amount of money

invested in the risky assets at time t is denoted by the d-dimensional vector φt. Then the

self-financing dynamics for the wealth F of the buffer fund with contribution Ct and pension

Pt is

dFt = Ftrtdt+ (Ct − Pt)dt+ φt · σt.(dWt + ηtdt).

In order to ensure the sustainability of the pension system, a maximum amount of debt is

imposed to the buffer fund :

(Sustainability constraint) ∀t ≥ 0, Ft ≥ Kt, a.s., (1.12)

Kt is an adapted predictable process, that can be negative, and (−Kt) corresponds to the

social planner maximum amount of debt at time t. For instance, (−Kt) can represent a

proportion of the Gross Domestic Product (GDP), while the no borrowing constraint corre-

sponds to Kt ≡ 0. We assume throughout the paper that K is an Itô process:

dKt = µKt dt+ δKt · dWt. (1.13)

Social planner strategy The strategy of the social planner (pensions and investment)

is parametrized by (π, ρ) where Pt = ρtP
min
t and πt := trσtφt ∈ Rt. The dynamic dynamic
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2. The social planner’s dynamic decision criterion

of the buffer with strategy (π, ρ) is thus given by:

dF π,ρt = F π,ρt rtdt+ (Ct − ρtPmint )dt+ πt · (dWt + ηtdt). (1.14)

Observe that the previous equation is not in a multiplicative form since the value of the fund

F can be negative.

Definition 1.1 (Admissible strategy). An F-adapted strategy (π, ρ) is said to be admissible

if and only if

• πt ∈ Rt, ∀ t ≥ 0 P-a.s.

•
∫ t

0

(
|Cs − ρsPmins |+ ‖πs‖2

)
ds <∞, ∀ t ≥ 0 P-a.s.

• ρt ≥ 1 (adequacy) and F π,ρt ≥ Kt (sustainability) ∀ t ≥ 0 P-a.s.

The set of all admissible strategies (π, ρ) is denoted A.

Lastly, we introduce the class of the so-called state price density processes (taking into

account the discount factor), also called discounted pricing kernels. The discounted pricing

kernels Y are characterized by the property that for any admissible strategy (π, ρ), the current

wealth plus the cumulative pension minus the cumulative consumption, all discounted by

Y (that is YtF
π,ρ
t +

∫ t
0 (ρsP

min
s − Cs)Ysds) is a local martingale (see [EKHM22] for financial

and economic viewpoints on the discounted pricing kernels). Discounted pricing kernels

are positive Itô-semimartingale with the following dynamics characterized by an orthogonal

volatility component νt ∈ R⊥t .

Definition 1.2. (State price density process/discounted pricing kernel). A positive Itô semi-

martingale Y ν is called an admissible state price density process (or discounted pricing kernel)

if it has the differential decomposition

Y ν = Y ν [−rtdt+ (νt − ηt) · dWt], νt ∈ R⊥t , Y ν
0 = Y0. (1.15)

2 The social planner’s dynamic decision criterion

The pension allocation and the investment in the buffer fund is decided by a social planner.

Her decision are taken upon a preference criterion that should take into account present and

future generations. Since the social planner has to aggregate the heterogeneous preferences

of the different cohorts, her utility criteria is necessarily complex.

Moreover, due to the long-term characteristics of pension schemes, the decision criteria should

be adapted to the non-stationary demographic, economic and financial environment in order

to provide a consistent strategy in the long run. For both of these aspects, it has been

shown that dynamic utility provides a flexible framework to handle this heterogeneity and

to propose long-term policies coherent in time ([EKHM17],[EKHM18]).
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2. The social planner’s dynamic decision criterion

2.1 Definition of Dynamic Utilities

Dynamic utilities extend the standard notion of deterministic utilities, by allowing the utility

criterion to be dynamically adjusted to the available information represented by the filtra-

tion (Ft)t≥0. A dynamic utility U is a then collection of random utility functions {U(t, ω, z)}
whose temporal evolution is “updated” in accordance with the new information (Ft), start-

ing from an initial utility function u(z) = U(0, z) (which is deterministic if F0 is trivial).

Throughout the paper, we adopt the convention of small letters for deterministic utilities and

capital letters for stochastic utilities. The specificity of this paper lies in the sustainability

and adequacy constraints for the buffer fund and the pension process, which will be taken

into account in the definition domain of dynamic utilities. In the following, we give a precise

definition of this extension of dynamic utilities on stochastic domains.

Definition 2.1 (Dynamic Utility on stochastic domain).

A dynamic utility defined on a random domain U = (U(t, z, ω)) is a collection of random

utility functions defined on a stochastic domain DU := {(t, z, ω), z ≥ Xt(ω)} such that

(i) (Xt) is an F-adapted process.

(ii) For all t ≥ 0, for all z ≥ Xt, U(t, z) is Ft-adapted.

(iii) There exists N ∈ F with P(N) = 0, such that for any ω ∈ N c, and for any t ≥ 0, the

functions z ∈ [Xt(ω),∞[7→ U(t, z, ω) are nonnegative, strictly concave increasing functions

of class C2 on ]Xt(ω),∞[.

(iv) Inada conditions: lim
z→Xt(ω)

Uz(t, z, ω) = +∞ and lim
z→+∞

Uz(t, z, ω) = 0, ∀t ≥ 0 P-a.s.

As for a standard utility function, the risk aversion coefficient RA(U) is measured by the

ratio RA(U)(t, z) = −Uzz(t, z)/Uz(t, z) and the relative risk aversion by Rr
A(U)(t, z) =

zRA(U)(t, z). Note that for dynamic utilities, RA and Rr
A are random coefficients.

Remark 2.2. Note that the Inada condition in Xt implies that the absolute risk aversion

coefficient explodes in Xt:

lim
z→Xt(ω)

RA(U)(t, z) = lim
z→Xt(ω)

−Uzz(t, z)
Uz(t, z)

= +∞, P-a.s . (2.1)

Indeed, denoting f(t, z) := −Uzz(t,z)
Uz(t,z) , we have that Uz(t, z) = Uz(t, z0)exp(

∫ z0
z f(t, u)du) for

z0 > z greater than Xt. Then, for a fixed z0, the Inada condition lim
z→Xt(ω)

Uz(t, z) = +∞

implies lim
z→Xt(ω)

∫ z0
z f(t, u)du = +∞ and therefore lim

z→Xt(ω)
f(t, z) = +∞.

The Fenchel-Legendre convex conjugate of a dynamic utility U defined on a stochastic domain

DU := {(ω, t, z), z ≥ Xt(ω)} is denoted by Ũ , where Ũ satisfies

Ũ(t, y) = sup
z≥Xt(ω)

(
U(t, z)− yz), y ∈ R+.

In particular, Ũ(t, y) ≥ U(t, z) − yz and the maximum is attained at Uz(t, z) = y. Note
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2. The social planner’s dynamic decision criterion

that Ũ is defined on R+ × R+ thanks to Inada conditions on U . Ũ is twice continuously

y-differentiable, strictly convex, strictly decreasing. Moreover, the marginal utility Uz verifies

U−1
z (t, y) = −Ũy(t, y); Ũ(t, y) = U

(
t,−Ũ(t, y)

)
+ Ũy(t, y) y, and U(t, z) = Ũ

(
t, Uz(t, z)

)
+

zUz(t, z).

Dynamic CRRA utilities Deterministic Constant Relative Risk Aversion (CRRA)

utilities is the standard framework in the economic literature, as explained in [Wak08]. They

belong to the class of deterministic Hyperbolic Absolute Risk Aversion (HARA) utility (see

e.g. the seminal paper of Merton [Mer75], or Kingston and Thorp [KT05]) characterized by

an hyperbolic absolute risk aversion coefficient:

RA(u)(z) = −uzz(z)
uz(z)

=
1

az + b
, with a > 1 and b ∈ R. (2.2)

Integrating (2.2) gives that u(z) = (z+b/a)1−θ

1−θ , defined for z > −b/a, and where θ = 1/a. The

case b = 0 corresponds to CRRA utility (also called power utilities) with constant relative

risk aversion θ. Hereafter, we extend the notion of deterministic CRRA utilities to dynamic

ones, still with deterministic θ.

Definition 2.3. Dynamic CRRA utility U (θ)(t, z), with θ ∈]0, 1[, are defined by

U (θ)(t, z) := Zut
(z −Xt)

1−θ

1− θ
, for z ≥ Xt (2.3)

where Xt is a stochastic process and Zut is a positive stochastic coefficient reflecting the

random evolution of the time preferences.

For instance Xt can represent a borrowing constraint of the social planner. Dynamic CRRA

utilities satisfy Inada conditions :

lim
z→∞

U (θ)
z (t, z) = 0 and lim

z→Xt(ω)
U (θ)
z (t, z) =∞, ∀t, P a.s..

2.2 Buffer fund and pensioners dynamic utilities

The social planner’s preference process is defined as U(t, Ft) +
∫ t

0 V (s, ρs)ds, where U is

the buffer fund dynamic utility, and V is the aggregate dynamic utility of the pensioners.

The sustainability constraint (1.12) and the adequacy constraint (1.8) are translated into

stochastic domains for both U and V . The supermartingale property induced by the dynamic

programming principle will be translated into condition on local characteristics of U . This

explains why we assume stronger regularity conditions on U than on V .

Definition 2.4 (Buffer fund utility). The buffer fund utility U is a dynamic utility with

domain DU = {(ω, t, z), z ≥ Kt}, where (Kt) is the sustainability bound satisfying (1.13) and

with U(t, ·) of class C3,δ, that is of class C3 with Uzzz δ-Hölder, δ ∈]0, 1[.
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2. The social planner’s dynamic decision criterion

The preference process of a pensioner of age a at time t, is defined by v̄(t, a, pt(a)), with pt(a)

then pension amount, and v̄ a dynamic utility depending of the pensioner’s age and taking

into account uncertain future changes in the pensioners’ preferences.

The social planner aggregates preferences of all pensioners to obtain the aggregated pension-

ers’ dynamic utility defined by
∫∞
ar
v̄(t, a, pt(a))ωt(a)n(t, a)da, with ωt(a) the weight given to

a pensioner of age a at time t. For instance, the social planner can take into account the

actuarial fairness by giving more weight to pensioners who contributed more.

Recalling that pt(a) = pmint (a)ρt, we can define a weighted dynamic utility v applied to ρt,

with

v(t, a, ρ) = ωt(a)v̄(t, a, pmint (a)ρ). (2.4)

In the following, we refer to v as a pensioner dynamics utility from the viewpoint of the

social planner.

Definition 2.5 (Pensioners’ utility). We assume that a pensioner at time t and of age a

has the dynamic utility v(t, a, ·), defined as in (2.4) on a domain [ρ
t
,+∞[, with ρ

t
≤ 1. The

aggregated utility of pensioners is defined by:

V (t, ρ) =

∫ ∞
ar

v(t, a, ρ)n(t, a)da. (2.5)

Example 1 We come back to the case where each pensioner receives the same pension

amount pt = ρtp
min
t ≥ pmint and has the same dynamic utility v̄(t, p). In order to take into

account actuarial fairness, the social planner can aggregate preferences of all living pensioners

by weighting their utility by their past contributions αcct(a) (in the same spirit of [GG12]),

introduced in (1.10). Then,

v(t, a, ρ) = αcct(a)v̄(t, ρ pmint ),

and the aggregate utility from pensions, taking into account the weight of each pensioners’

generation, is

V (t, ρ) =

∫ ∞
ar

v̄(t, ρ pmint )αcct(a)n(t, a)da = ωrt v̄(t, ρ pmint ), (2.6)

with the total weight of all pensioners living at time t given by

ωrt = αc

∫ ∞
ar

ct(a)n(t, a)da. (2.7)

Example 2: In the second example of age-dependent pension, pt(a) = pmint (a)ρt with

pmint (a) = pret(ar + t− a)e
∫ t
ar+t−a λsds.We further assume that the pensioners utility v̄(t, a, p)

may depend on their age, so that v(s, a, ρ) = v̄(s, a, ρ pmins (a)). Then the actuarial fairness

criteria is taken into account via the choice of initial pension amount pret(s), which increases

with the past contribution of the individual retiring at time s. Thus, the social planner may

11



2. The social planner’s dynamic decision criterion

aggregate the pensioners’ utility without using any correcting weight. Then

V (t, ρ) =

∫ ∞
ar

v̄(t, a, ρ pret(ar + t− a)e
∫ t
ar+t−a λudu)n(t, a)da (2.8)

We introduce the following assumption on the rates of increase of the marginal dual utilities

Ṽρ and Ũz, that will play a role in proving the existence of an admissible optimal portfolio

in Theorem 3.5.

Assumption 2.6. We assume the existence of a locally integrable process B such that

|Ṽρ(t, z)− Ṽρ(t, z′)| ≤ Bt |Ũz(t, z)− Ũz(t, z′)|, for t ≥ 0, z > 0, z′ > 0. (2.9)

2.3 Consistency Property

Social planner optimization problem The social planner has to manage a tradeoff be-

tween the pension payed to the pensioners and the fund that constitutes reserves for the

future generations, among all the admissible strategies satisfying the sustainability and ad-

equacy. In the usual setting, the optimization program is posed backward. It is formulated

on a given horizon TH , and is written at time t = 0 as follows (given F0 = x):

U(0, x) := sup
(π,ρ)∈A

E
(
u(TH , F

π,ρ
TH

) +

∫ TH

0
V (t, ρt)dt

)
. (2.10)

In the backward formulation, the utilities u of terminal wealth (at TH) and V of pension rate

are given. In our context of intergenerational risk-sharing for pensions, fixing a (long-term)

time-horizon TH and even more a utility function u(TH , .) seems artificial. Extending the

optimization program and the optimal strategy to a horizon larger to TH , in a time-consistent

way, is also a difficult issue. In order to ensure consistency across time and generations,

the social planner should be able to identify which “terminal” criterion U(T, .) should be

considered at any intermediate date T ≤ TH , while still leading to the same optimal strategy

and the same value U(0, x), that is satisfying

for any T ≤ TH , U(0, x) = sup
(π,ρ)∈A

E
(
U(T, F π,ρT ) +

∫ T
0 V (t, ρt)dt

)
.

Under regularity assumptions, this criterion is given by the “value function” U(T, z) given

the wealth FT = z at time T

U(T, z) = “ sup ”
(π,ρ)∈A

E
(
u(TH , F

π,ρ
TH

(T, z)) +

∫ TH

T
V (s, ρs)ds|FT = z

)
, a.s.. (2.11)

This time-consistency translates into a martingale property of the preference process

U(t, F
(π,ρ)
t ) +

∫ t
0 V (s, ρs)ds along the optimal strategy. This property, known as the dynamic

programming principle, is the main tool in the theory of stochastic control, see Davis [Dav79]

or El Karoui [EK81]. In this backward setting, U(TH , .) = u(TH , .) is given, and the unknown

12



2. The social planner’s dynamic decision criterion

is the optimal strategy (F ∗, ρ∗) as well as U(t, .), also called ”indirect” utility, possibly

stochastic. Nevertheless, U is difficult to compute (even if u(TH , .) is given as a simple

deterministic function), and it is even not trivial to prove that U defined by (2.11) is indeed

concave.

In the forward setting, there is no intrinsic time-horizon TH and this is the initial utility

U(0, .) which is given. This means that forward utilities differ from backward utilities by

their boundary conditions, both satisfying a dynamic programming principle, also called

consistency given the constraints set A.

Consistency and optimal strategy The satisfaction provided by an admissible strat-

egy (π, ρ) ∈ A is measured by the dynamic criterion U(t, F π,ρt ) +
∫ t

0 V (s, ρs)ds. that is

assumed to satisfy a dynamic programming principle.

Definition 2.7 (Consistent dynamic utility). Let (U, V ) be a dynamic utility system with

admissible strategies set A. The utility system (U, V ) is said to be consistent, if

(i) For any admissible strategies (π, ρ) ∈ A, the preference process (U(t, F π,ρt )+
∫ t

0 V (s, ρs)ds)

is a non-negative supermartingale.

(ii) There exists an optimal strategy (π∗, ρ∗) ∈ A, binding the constraints, in the sense that

the optimal preference process (U(t, F π
∗,ρ∗

t ) +
∫ t

0 V (s, ρ∗s)ds) is a martingale.

Under regularity assumptions, the value function (U(t, z), V (t, ρ)) of the classical optimiza-

tion problem is an example of consistent utility system, defined from its terminal condition

U(TH , z) = u(z) (see [EKHM18] and [EKHM22] for a general discussion between the forward

and the backward viewpoints of utility functions).

2.4 Semimartingale dynamic utility

In order to study the preference process (U(t, F π,ρt ) +
∫ t

0 V (s, ρs)ds), we assume in the fol-

lowing that the buffer fund dynamic utility U defined in 2.4 is an Itô random field:

dU(t, z) = β(t, z)dt+ γ(t, z).dWt, z ≥ Kt, (2.12)

with β(t, z) the drift random field and γ(t, z) the multivariate diffusion random field. Since

the domain of the buffer fund utility U is time varying, its dynamics is defined more precisely

by introducing the shifted utility Ū with fixed domain R+ × R+:

Ū(t, z) := U(t, z + Kt), ∀(t, z) ∈ R+ × R+, (2.13)

and with local characteristics denoted by (β̄, γ̄). Obviously U is a dynamic utility onDU if and

only if Ū is a dynamic utility on R+×R+. These semimartingale dynamic utilities have been

studied in details in [EKM13]. An important point is the connection between the regularity

of the dynamic utility Ū and that of its local characteristics (β̄, γ̄). If Ū is of class C2,δ then its

13



2. The social planner’s dynamic decision criterion

characteristics β̄ and γ̄ are of class C2,ε for all 0 < ε < δ and conversely if β̄ and γ̄ are in the

class C2,δ then U is in C2,ε for all 0 < ε < δ ([Kun97], [EKM13]). Another point are conditions

on (β̄, γ̄) for Ū to be a dynamic utility. Indeed, in the absence of general comparison results for

stochastic integrals, it is not straightforward to obtain conditions on the local characteristics

(β̄, γ̄) such that the process Ū(t, z) = Ū(t, 0) +
∫ t

0 β̄(t, s)ds + γ̄(s, z).dWs is increasing and

concave.

We recall sufficient assumptions below:

Assumption 2.8. Let Ū(t, z) = U(t, z + Kt) the shifted buffer fund utility. We assume that

there exists random bounds (B1
t ) and (ζt) such that a.s.

∫ T
0 B1

t dt <∞ and
∫ T

0 ζ2
t dt <∞ for

any T , and such that for any z > 0:{
|β̄z(t, z)| ≤ B1

t Ūz(t, z), |β̄zz(t, z)| ≤ B1
t |Ūzz(t, z)| (2.14)

‖γ̄z(t, z)‖ ≤ ζt Ūz(t, z), ‖γ̄zz(t, z)‖ ≤ ζt |Ūzz(t, z)| (2.15)

Under Assumption 2.8, Ū is a well-defined dynamic utility by Corollary 1.3 in [EKM13].

Itô-Ventzel’s formula The link between the local characteristics (β, γ) of U and (β̄, γ̄)

of Ū are deduced from the Itô-Ventzel formula, which is a generalization of the Itô formula

in the case where the function is itself a random field.

The Itô-Ventzel formula gives the decomposition of a compound random field U(t,Xt) for

U(t, z) = u(0, z) +
∫ t

0 β(s, z)ds +
∫ t

0 γ(s, z).dWs regular enough (of class C2,δ, with δ ∈]0, 1[)

and any Itô semimartingale X. This decomposition is the sum of three terms: the first one is

the ”differential in t” of U , the second one is the classic Itô’s formula (without differentiation

in time) and the third one is the infinitesimal covariation between the martingale part of Uz

and the martingale part of X, all these terms being taken in Xt.

dU(t,Xt) =
(
β(t,Xt) dt+ γ(t,Xt).dWt

)
(2.16)

+
(
Uz(t,Xt)dXt +

1

2
Uzz(t,Xt)d < X,X >t

)
+
(
< γz(t,Xt) · dWt, dXt >

)
.

Applying the Itô-Ventzell formula to Ū(t, z − Kt) yields the following result.

Proposition 2.9. Recall that the bound Kt is an Itô process with dynamics dKt = µKt dt+δKt ·
dWt. Under Assumption 2.8, U is a dynamic utility on the domain DU = {(ω, t, z), z ≥ Kt},
with local characteristics β(t, z) = β̄(t, z − Kt)− Uz(t, z)µKt −

1

2
Uzz(t, z)‖δKt ‖2 − γz(t, z) · δKt (2.17)

γ(t, z) = γ̄(t, z − Kt)− Uz(t, z)δKt , ∀z ≥ Kt. (2.18)
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3. Optimal PAYG pension policies

3 Optimal PAYG pension policies

Let us recall that a pensioner of age a at time t receives pension p(t, a) = pmint (a)ρt ≥ pmint (a).

The buffer fund in which the social planner can borrow/invest has the dynamics (1.13) given

by:

dF π,ρt = F π,ρt rtdt+ (Ct − ρtPmint )dt+ πt · (dWt + ηtdt),

with (Ct) the contribution process, (Pt) = (ρtP
min
t ) the pension process introduced in (1.7),

and (πt) the investment strategy in the incomplete market. The aggregated utility of pen-

sioners is given by V (t, ρ) =
∫∞
ar
v(t, a, ρ)n(t, a)da (see (2.5) and subsequent examples).

The first aim is to characterize the buffer fund utility U of the social planner, such that

the preference criteria (U, V ) is consistent, and then to determine the admissible strategy

(π, ρ) ∈ A optimizing the dynamic criterion U(t, F π,ρt ) +
∫ t

0 V (s, ρs)ds.

3.1 Consistency SPDE

The Itô-Ventzel’s formula allows us to transform the supermartingale property implied by the

consistency condition into conditions on the differential characteristics of the utility process

U . For standard deterministic utility functions, the infinitesimal counterpart of the dynamic

programming principle is a nonlinear Partial Differential Equation (PDE), called dynamic

programming equation or Hamilton-Jacobi-Bellman (HJB) equation. In the framework of

dynamic utility, the consistency characterization is given in terms of an HJB Stochastic

Partial Differential Equation (SPDE). The presence of pensions to be paid impacts this

SPDE in a non-linear way, the non-linear factor involving the utility of pensioners V . Note

that the utility U and V are not of the same nature : the consistency is conveyed by U , which

requires then stronger regularity conditions on U than on V . This HJB-SPDE provides a

constraint on the drift β of U , as explained below.

Candidate to be the optimal strategy Applying Itô-Ventzel’s formula to the pref-

erence process Zπ,ρt :=
∫ t

0 V (s, ρs)ds+ U(t, F π,ρt ) with yields

dZπ,ρt =
(
β(t, F π,ρt ) + Uz(t, F

π,ρ
t )(F π,ρt rt + Ct)

)
dt

+
(
γ(t, F π,ρt ) + Uz(t, F

π,ρ
t )πt

)
· dWt

+
(
P(t, F π,ρt , ρt) +Q(t, F π,ρt , πt)

)
dt.

with P(t, z, ρ) := V (t, ρ)− Uz(t, z)Pmint ρ (3.1)

Q(t, z, π) :=
1

2
Uzz(t, z)||πt||2 + πt · (γz(t, z) + Uz(t, z)ηt). (3.2)

A natural candidate for optimal policy (π∗, ρ∗) are processes which maximize the drift of

the preference process Zπ,ρ. Thus, π∗ should maximize Q(t, z, ·) and ρ∗ should maximize
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3. Optimal PAYG pension policies

P(t, z, ·) on [1,+∞], leading to

π∗t (F
∗
t ) = −γ

R
z (t, F ∗t ) + Uz(t, F

∗
t )ηt

Uzz(t, F ∗t )
and ρ∗t (F

∗
t ) = V −1

ρ

(
t, Pmint Uz(t, F

∗
t )
)
∨ 1. (3.3)

Note that Q(t, z, π∗t ) = −1
2Uzz(t, z)‖π

∗
t ‖2.

With a slight abuse of notation, we use interchangeably π∗t (resp. ρ∗t ) or π∗t (F
∗
t ) (resp.

ρ∗t (F
∗
t )).

To alleviate the notations, we introduce the optimal pension process without minimum guar-

antee, denoted ρf (free constraints).

Definition 3.1. The maximizer of the operator P(t, z, ρ) := V (t, ρ) − Uz(t, z)P
min
t ρ for

ρ ∈ R+ is denoted

ρft (z) = V −1
ρ

(
t, Pmint Uz(t, z)

)
. (3.4)

Remark that P(t, z, ρft (z)) = Ṽ (t, Pmint Uz(t, z)).

Remark 3.2. Note that if U satisfies the Inada condition at K, then v also satisfy the Inada

condition at ρ,in order to ensure that the optimal pension is well defined (namely the quantity

V −1
ρ

(
t, Pmint Uz(t, z)

)
). Remark also that Inada conditions for U and v at +∞ can be relaxed

into the following condition lim
ρ→+∞

Vρ(t, ρ) ≤ Pmint lim
z→+∞

Uz(t, z).

Consistency condition on the drift β of U If the candidate (π∗, ρ∗) is indeed the

optimal strategy, then to satisfy the time consistency, the drift of the preference process Zπ,ρ

should be nonpositive for any admissible strategy (π, ρ) and equal to zero for the optimal

stragegy (π∗, ρ∗). This leads to the following sufficient condition on the drift of U

β(t, z) = −Uz(t, z)(zrt + Ct)−Q(t, z, π∗)− P(t, z, ρ∗t (z))

= −Uz(t, z)
(
zrt + Ct − Pmint ρ∗

)
+

1

2
Uzz(t, z)‖π∗t (z)‖2 − V (t, ρ∗t (z)). (3.5)

3.2 Main results

We gather here the main results the paper, proofs and examples being postponed in the next

subsections. The first below result shows that under the consistency HJB condition (3.5),

the bound K shifting the utility U is necessarily a buffer fund. This is an interesting new

result.

Theorem 3.3. Let U be the buffer fund utility introduced in 2.4 and verifying Assumption

2.8, and V the aggregated pensioners’ utility, verifying Assumption 2.6. Assume that the

drift β of U satisfies the HJB constraint

β(t, z) = −Uz(t, z)
(
zrt + Ct − Pmint ρ∗t (z)

)
+

1

2
Uzz(t, z)‖π∗t (z)‖2 − V (t, ρ∗t (z)). (3.5)
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Then the sustainability bound K is necessarily a buffer fund receiving the contribution C and

paying the minimal pension amount Pmin, that is:

dKt = (Ktrt + Ct − Pmint )dt+ δKt · (dWt + ηtdt), δ
K ∈ R. (3.6)

The proof is postponed to Section 3.3.

Remark 3.4. Theorem 3.3 states that if the utility system (U, V ) is consistent, then the

shift Kt of the utility U is necessarily a buffer fund with minimal pensions. Nevertheless,

in the original problem formulation and Definition 2.4 of U , Kt is not assumed to be a

buffer fund itself: for instance if K is an index following the GDP, there is no reason why

it will follow dynamics (3.6). Therefore, to satisfy the consistency constraint, the dynamic

utility should be shifted not with the sustainability constraint Kt, itself but with a buffer

fund process (Xt) that super-replicates (in a pathwise way) (Kt) that is : Xt ≥ Kt, for all

t, P a.s. This means that the sustainability constraint is transformed into a stronger one:

Ft ≥ Xt (≥ Kt), for all t, P a.s.. The problem is equivalent to searching for a self-financing

portfolio (without contributions and pensions) X ′ super-replicating (pathwise) the process

Bt := Kt +
∫ t

0 (Pmins − Cs)ds. For example, it may be relevant to choose the “minimal”

super-replicating self-financing portfolio (X ′t) (if it exists) in the following sense:

X∗0 := inf{X0 ≥ K0 s.t. ∃π′ ∈ R satisfying X ′t := X0+

∫ t

0

rsX
′
sds+π

′
s·(dWs+ηsds) ≥ Bt, dt⊗dPa.s.}

The existence of a super-replicating self-financing portfolio is not guaranteed, especially in

our context of incomplete market, in which demographic risk can not be completely hedged by

financial assets. Applying Theorem 5.12 of Karatzas and Kou [KK98], a sufficient existence

condition on [0, T ] is

sup
ν∈R⊥

sup
τ∈τ [0,T ]

E
(
Y ν
τ

(
Kτ +

∫ τ

0
(Pmins − Cs)ds

)+)
<∞, ∀T ≥ 0, (3.7)

where τ [0,T ] is the class of stopping times τ with values in the interval [0, T ] and Y ν the

state price density process (1.15). Note that this supremum corresponds to X∗0 which is the

super-replicating price of (Bt).

In the backward framework, El Karoui and Jeanblanc [EKJP98], or He and Pagès [HP93]

consider a complete market, which ensures the existence of a super-replicating portfolio. In

incomplet market, an analoguous assumption as (3.7) is needed in Mostovyi and Sirbu [MS20]

(Assumption 2.5), to ensures the existence of a super-replicating portfolio (see Lemma 3.2

[MS20] ).

The following theorem shows that the policy given by (3.3) is indeed the optimal strategy,

and that the corresponding buffer fund satisfies the sustainability constraint (1.12).

Theorem 3.5. Let U be the buffer fund utility verifying Assumptions 2.8, and V be the

aggregated pensioners’ utility, verifying Assumption 2.6. Assume F0 > K0 and that the drift
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β of U satisfies the HJB constraint (3.5):

β(t, z) = −Uz(t, z)
(
zrt + Ct − Pmint ρ∗t (z)

)
+

1

2
Uzz(t, z)‖π∗t (z)‖2 − V (t, ρ∗t (z)),

with

 π∗t (z) = −γ
R
z (t, z) + Uz(t, z)ηt

Uzz(t, z)
, (3.8)

ρ∗t (z) = V −1
ρ

(
t, Pmint Uz(t, z)

)
∨ 1. (3.9)

Then the portfolio/pension plan (π∗, ρ∗) is the optimal strategy. In particular, the buffer fund

F ∗ following the investment strategy π∗t = π∗t (F
∗
t ) and paying the pension amount ρ∗t = ρ∗t (F

∗
t )

is strictly greater than Kt and satisfies the dynamics{
dF ∗t = µ∗t (F

∗
t )dt+ π∗t (F

∗
t ).dWt, (3.10)

µ∗t (z) := zrt + Ct − Pmint ρ∗t (z) + π∗t (z)ηt.

The proof is postponed to Section 3.4.

Since V −1
ρ (t, ·) and Uz(t, ·) are decreasing functionals, the optimal pension p∗t (a) = ρ∗t p

min
t (a)

is increasing in the fund’s wealth, which is natural. On the other hand, when minimum

pension amount Pmint to be paid increases (for instance due to an increase in the number of

retirees), p∗t (a) decreases.

Corollary 3.6. Under the assumptions and notations of Theorem 3.5,

lim
z→Kt

π∗t (z) = δKt , lim
z→Kt

ρ∗t (z) = 1, ∀t ≥ 0 P− a.s. (3.11)

This means that the optimal strategy converges to the “minimal” buffer fund strategy when

F ∗ tends to the sustainability bound.

Proof. First, using the expression of the optimal portfolio (3.8),

‖π∗t (z)− δKt ‖ = ||γ
R
z (t, z) + Uz(t, z)ηt

Uzz(t, z)
+ δKt ||

≤ ||γ
R
z (t, z) + Uzz(t, z)δ

K
t

Uzz(t, z)
||+ ||ηt||

Uz(t, z)

|Uzz(t, z)|
(2.15)

≤ (Ct + ||ηt||)
Uz(t, z)

|Uzz(t, z)|
z→Kt−→ 0

since limz→Kt
Uzz(t,z)
Uz(t,z) = −∞ from Remark 2.2. Finally, by the Inada condition on U and V ,

lim
z→Kt

ρ∗t (z) ∨ 1 = lim
z→Kt

V −1
ρ

(
t, Pmint Uz(t, z)

)
∨ 1 = lim

ρ→+∞
V −1
ρ (t, ρ) ∨ 1 = ρ

t
∨ 1 = 1.

Example 1 We come back to the first example, in which the pension and individual

pensioners’ utility v̄ do not depend on the age of the pensioner. The social planner attributes
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the global weight ωrt = αc
∫∞
ar
ct(a)n(t, a)da to pensioners living at time t, based on their past

contributions (see (2.7)). In this example, the aggregate utility of pension is given by (2.6):

V (t, ρ) =

∫ ∞
ar

v̄(t, ρpmint )αcct(a)n(t, a)da = ωrt v̄(t, ρpmint ).

We have pmint V −1
ρ (t, z) = v̄−1

ρ

(
t, z
pmint ωrt

)
. Besides, Pmint = N r

t p
min
t where N r

t =
∫∞
ar
n(t, a)da

is the number of pensioners at time t. This implies that the optimal pension for each pensioner

is

p∗t (z) = pmint ρ∗t (z) = v̄−1
ρ

(
t,
N r
t

ωrt
Uz(t, z)

)
∨ pmint . (3.12)

The pension amount then increases with the quantity
ωrt
Nr
t

, corresponding to the average

individual contribution of a pensioner living at time t.

Example 2 In the second example of age-dependent pension and utility v̄, the aggregate

utility of pension V is a complex aggregation between cohorts given by (2.8):

V (t, ρ) =

∫ ∞
ar

v̄(t, a, ρ pret(ar + t− a)e
∫ t
ar+t−a λudu)n(t, a)da.

In all generality, there is no straightforward formula for V −1
ρ in terms of the v̄−1

ρ , except in

particular cases of dynamic utilities such as dynamic CRRA utilities (see Section 4).

3.3 Proof of Theorem 3.3

Theorem 3.3 states that in order to satisfy the consistency condition (3.5), the sustainability

bound K is necessarily a buffer fund receiving the contribution C and paying the minimal

pension amount Pmin. We recall the dynamics of K is given by (1.13): dKt = µKt dt+δKt ·dWt.

As in Proposition 2.9, we consider hereafter the stochastic utility Ū(t, z) = U(t, z+Kt) whose

local characteristics are given, by β(t, z) = β̄(t, z − Kt)− Ū z(t, z − Kt)µ
K
t +

1

2
Ū zz(t, z − Kt)||δKt ||2 − γ̄z(t, z − Kt)δ

K
t ,

γ(t, z) = γ̄(t, z − Kt)− Ūz(t, z − Kt)δ
K
t ,

by the Itô-Ventzel’s formula. This combined with the HJB-constraint below,

β(t, z) = −Uz(t, z)(zrt+Ct)+
1

2
Uzz(t, z)‖

γRz (t, z) + Uz(t, z)ηt
Uzz(t, z)

‖2−V (t, ρ∗t (z))+Uz(t, z)P
min
t ρ∗t (z),
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yields that

β̄(t, z − Kt)− Ūz(t, z − Kt)µ
K
t +

1

2
Ūzz(t, z − Kt)||δKt ||2 − γ̄z(t, z − Kt) · δKt

= −Ūz(t, z − Kt)(zrt + Ct)− V (t, ρ∗t (z)) + Ūz(t, z − Kt)P
min
t ρ∗t (z)

+
1

2
Ūzz(t, z − Kt)||

γ̄Rz (t, z − Kt)− Ūzz(t, z − Kt)δ
K,R
t + Ūz(t, z − Kt)ηt

Ūzz(t, z − Kt)
||2.

Reorganizing the terms, we have (omitting the variables (t, z − Kt) to simplify notations):

β̄+V (t, ρ∗t (z)) = Ūz (µKt −zrt−Ct+Pmint ρ∗t (z))+
1

2

1

Ūzz

(
||γ̄Rz −Ūzzδ

K,R
t +Ūzηt||2−||ŪzzδKt ||2

)
+γ̄z·δKt .

Rewriting the last term as follows,

1

2

1

Ūzz

(
||γ̄Rz − Ūzzδ

K,R
t + Ūzηt||2 − ||ŪzzδKt ||2

)
+ γ̄z · δKt

=
1

2

1

Ūzz

(
||γ̄Rz + Ūzηt||2 − 2(γ̄Rz + Ūzηt) · ŪzzδKt − ||Ūzzδ

K,⊥
t ||2

)
+ γ̄z · δKt

=
1

2

1

Ūzz

(
||γ̄Rz + Ūzηt||2 − ||ŪzzδK,⊥t ||2

)
+ γ̄⊥z · δKt − Ūzηt · δKt ,

we get that the consistency condition (3.5) is equivalent to

β̄(t, z − Kt) + V (t, ρ∗t (z))

= Ūz (µKt − zrt − Ct + Pmint ρ∗(z)− ηt · δKt ) +
1

2

1

Ūzz

(
||γ̄Rz + Ūzηt||2 − ||ŪzzδK,⊥t ||2

)
+ γ̄⊥z · δKt

= Ūz

[
µKt − zrt − Ct + Pmint ρ∗t (z)− ηt · δKt +

1

2

1

ŪzzŪz

(
||γ̄Rz + Ūzηt||2 − ||ŪzzδK,⊥t ||2

)
+
γ̄⊥z
Ūz
· δKt
]
.

Let us analyze the behavior of the left hand size and the right hand size of this identity, when

z → Kt. We have by 2.4 and 2.5 that lim
z→Kt

ρ∗t (z) = lim
z→Kt

V −1
p

(
t, Pmint Uz(t, z)

)
∨1 = ρ

t
∨1 = 1.

Furthermore, Ū(t, 0) is well defined. Hence, by continuity the limit of β̄(t, z − Kt) when

z − Kt → 0 exists and is equal to β̄(t, 0). Thus, the left-hand side of the previous equation

tends to a constant lt <∞.

For the right-hand side, since by the Inada condition Ūz(t, z − Kt) → ∞ when z → Kt, the

bracketed term can therefore only tend towards zero, that is

lim
z→Kt

[
µKt −zrt−Ct+Pmint ρ∗t (z)−ηt ·δKt +

1

2

1

ŪzzŪz

(
||γ̄Rz +Ūzηt||2−||ŪzzδK,⊥t ||2

)
+
γ̄⊥z
Ūz
·δKt
]

= 0,

which we rewrite

lim
z→Kt

[
µKt −zrt−Ct+Pmint ρ∗t (z)−ηt·δKt +

γ̄⊥z
Ūz
·δKt +

1

2

( ||γ̄Rz ‖2
ŪzzŪz

+2
γ̄Rz · ηt
Ūzz

+
Ūz
Ūzz
‖ηt‖2−

Ūzz
Ūz
‖δK,⊥t ‖2

)]
= 0,
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3. Optimal PAYG pension policies

or equivalently,

lim
z→Kt

[
At(z) +

1

2

(
Bt(z)−

Ūzz
Ūz
‖δK,⊥t ‖2

)]
= 0, (3.13)

where we have used the notations
At(z) = µKt − zrt − Ct + Pmint ρ∗t (z)− ηt · δKt +

γ̄⊥z
Ūz
· δKt ,

Bt(z) =
||γ̄Rz ‖2

ŪzzŪz
+ 2

γ̄Rz · ηt
Ūzz

+
Ūz
Ūzz
‖ηt‖2.

We shall now study the limits of At(z) and Bt(z) when z tends to Kt. For this, we recall

according to Remark 2.2, that if the Inada condition holds, then

lim
z→Kt

Ūzz(t, z − Kt)

Ūz(t, z − Kt)
= lim

z→Kt

Uzz(t, z)

Uz(t, z)
= +∞.

Also, under Assumption 2.8, there exist a random bound ζt satisfying a.s.
∫ T

0 ζ2
t dt <∞ for

any T such that

lim
z→Kt

||γ̄z(t, z − Kt)‖
Ūz(t, z − Kt)

≤ ζt

Thus, |Bt(z)| = |‖γ̄
R
z ‖2

ŪzzŪz
+ 2 γ̄

R
z ·ηt
Ūzz

+ Ūz
Ūzz
‖ηt‖2| ≤ Ūz

Ūzz
(ζt + 3‖ηt‖2)→ 0 when (z − Kt)→ 0.

Furthermore,

|At(z)| = |(µKt −zrt−Ct+Pmint ρ∗t (z)−ηt·δKt )+
γ̄⊥z
Ūz
·δKt | ≤ |(µKt −zrt−Ct+Pmint ρ∗t (z)−ηt·δKt )|+ζt‖δK,⊥t ‖,

consequently At(z) has a finite limit when (z − Kt) → 0. This combined with |Bt(z)| → 0

when (z − Kt)→ 0, (3.13) and the fact that lim
z→Kt

Ūzz(t,z−Kt)
Ūz(t,z−Kt)

= +∞, implies that necessarily

δK,⊥t = 0. (3.14)

It follows from (3.13) that

lim
z→Kt

(µKt − zrt − Ct + Pmint ρ∗t (z)− ηt · δKt ) = µKt − Ktrt − Ct + Pmint − ηt · δKt = 0, (3.15)

where we have used, according to (3.11), limz→Kt ρ
∗
t (z) = 1. This concludes the proof of

Theorem 3.3.

3.4 Proof of Theorem 3.5

In order to show that the sustainability condition (F ∗t ≥ Kt, dt⊗dP a.s.) is satisfied under the

assumptions of Theorem 3.5, we study the intermediate process (Uz(t, F
∗
t )). This process

is actually the optimal state price density process (Y ∗t ). We refer to [EKHM18] for more

details.
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3. Optimal PAYG pension policies

Combining the bounds (2.15) on the derivatives of the diffusion coefficient γ̄(t, z) of Ū and

Theorem 3.3, we first show that Uz(t, F
∗
t ) is the unique strong (non-explosive) solution of

an SDE with Lipschitz coefficients. This property, combined with Inada conditions, ensures

that the sustainability condition is necessarily satisfied. This preliminary result is stated in

the following Proposition 3.7.

Proposition 3.7. Under the assumptions and notations of Theorem 3.5,

(i) The dynamics of the marginal utility Uz is given by

dUz(t, z) =
(
− Uzz(t, z)µ∗t (z)− Uz(t, z)rt −

1

2
Uzzz(t, z)‖π∗t (z)‖2 − γRzz · π∗t (z)

)
dt

+ γz(t, z) · dWt

(ii) Let τF = inf{t ≥ 0, F ∗t = Kt}. Uz(t, F ∗t ) is the solution of the following SDE on [0, τF [

of

dUz(t, F
∗
t ) = −Uz(t, F ∗t )rtdt+

(
γ⊥z (t, F ∗t )− Uz(t, F ∗t )ηt

)
· dWt. (3.16)

The proof of Theorem 3.5 is derived from Theorem 3.3 and Proposition 3.7, by following the

same steps than in the proof of Theorem 4.8 in [EKHM18].

Proof of Theorem 3.5. Inspired by (3.16), let us consider the following SDE

dYt = −Ytrtdt+
(
γ⊥z (t, U−1

z (t, Yt))− Ytηt
)
· dWt.

By Theorem 3.3, δK,⊥ = 0 a.s.. Hence, using the relation (2.18) between γ and γ̄, the condi-

tion (2.15) can be rewritten as ||γ⊥z (t, z)|| ≤ ζtUz(t, z) for some non negative process ζ such

that a.s.
∫ T

0 ζ2
t dt <∞ for any T . This implies that the coefficients of this SDE are Lipschitz,

yielding that this SDE admits a unique strong (non explosive) solution. Furthermore, by

Proposition 3.7, Uz(t, F
∗
t ) is solution of this SDE, which yields that τF = +∞ i.e. F ∗t > Kt,

∀t > 0, P a.s.. Besides, as a consequence of Assumptions 2.6 and 2.8,
(
π∗t (F

∗
t ), ρ∗t (F

∗)
)

verify

the required integrability condition, which concludes the proof.

The last step consists in proving Proposition 3.7.

Proof of Proposition 3.7.

(i) Since by assumption U satisfies the HJB constraint (3.5), its dynamics is

dU(t, z) =
(
− Uz(t, z)

(
zrt + Ct − Pmint ρ∗t (z)

)
+

1

2
Uzz(t, z)‖π∗t (z)‖2 − V (t, ρ∗t (z))

)
dt

+ γ(t, z) · dWt. (3.17)

In addition, since U is of class C3,δ and by Assumption 2.8, this implies by Corollary 1.3 in

[EKM13], that βz and γz are the local characteristics of the space derivative Uz.
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4. Application to dynamic CRRA utilities

On {1 < ρft (z)}, ρ∗t (z) = ρft (z) ∈ C1 with Uz(t, z)P
min
t = Vρ(t, ρ

f
t (z)) by (3.4). Thus

Uz(t, z)P
min
t ∂zρ

∗
t (z) = Vρ(t, ρ

∗
t (z))∂zρ

∗
t (z) on {1 < ρft (z)}.

This last inequality also holds on {ρft (z) ≤ 1} since on this set, ρ∗t (z) ≡ 1 implying ∂zρ
∗
t (z) =

0. Using those simplifications, the derivative with respect to z of the dynamics (3.17) of U

yields by [EKM13, Theorem 2.2],

dUz(t, z) =
(
− Uzz(t, z)

(
zrt + Ct − Pmint ρ∗t (z)

)
− Uz(t, z)rt (3.18)

+
1

2
Uzzz(t, z)‖π∗t (z)‖2 + Uzz(t, z)∂zπ

∗
t (z).π

∗
t (z)

)
dt+ γz(t, z).dWt.

Now, using the definition (3.8) of π∗,

∂zπ
∗
t (z) = −Uzzz(t, z)

Uzz(t, z)
π∗t (z)−

γRzz(t, F
∗
t ) + Uzz(t, F

∗
t )ηt

Uzz(t, F ∗t )
, (3.19)

which implies that

1

2
Uzzz(t, z)‖π∗t (z)‖2 + Uzz(t, z)∂zπ

∗
t (z).π

∗
t (z)

= −1

2
Uzzz(t, z)‖π∗t (z)‖2 − γRzz.π∗t (z)− Uzz(t, z)π∗t (z).ηt. (3.20)

Using the notation µ∗t (z) = zrt + Ct − Pmint ρ∗t (z) + π∗t (z)ηt for the drift of F ∗ and injecting

(3.19) and (3.20) in the dynamics (3.18), yields

dUz(t, z) =
(
− Uzz(t, z)µ∗t (z)− Uz(t, z)rt −

1

2
Uzzz(t, z)‖π∗t (z)‖2 − γRzz.π∗t (z)

)
dt

+ γz(t, z).dWt.

This establishes the first statement of the theorem.

(ii) Applying Itô-Ventzel’s formula to Uz(t, F
∗
t ) on {t < τF } gives (recalling the dynamics

dF ∗t = µ∗t (F
∗
t )dt+ π∗t (F

∗
t ).dWt):

dUz(t, F
∗
t ) = −Uz(t, F ∗t )rtdt+

(
γz(t, F

∗
t ) + Uzz(t, F

∗
t )π∗t (F

∗
t )
)
.dWt.

Using the identity γz(t, F
∗
t ) + Uzz(t, F

∗
t )π∗t (F

∗
t ) = γ⊥z (t, F ∗t ) − Uz(t, F ∗t )ηt, we conclude that

Uz(t, F
∗
t ) is solution of the SDE (3.16).

4 Application to dynamic CRRA utilities

We provide the resolution in the important example of dynamic Constant Relative Risk

Aversion (CRRA) utilities, also called power dynamic utilities, introduced in 2.1. We now

assume that the aggregated utility V of pensioners is given by an aggregation of individual

power dynamic utilities v̄, with pensioners having the same relative risk aversion θ.

The social planner needs to infer a dynamic utility U of the fund such that her preference
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4. Application to dynamic CRRA utilities

criterion (U, V ) is consistent. It is then natural to search the utility U in the same class1.

Therefore the goal is to find a consistent CRRA utility U (if it exists) satisfying assumptions

of Theorem 3.5:

U(t, z) = Zut
(z −Xt)

1−θ

1− θ
, (4.1)

where Zu is assumed to be a positive process with dynamics

dZut = Zut (btdt+ δt · dWt), δt ∈ Rn. (4.2)

As discussed in Remark 3.4, to take into account the sustainability constraint, X should

be taken as a buffer fund with pension rate Pmin and contribution rate C, and that super-

replicates (pathwise) the sustainability bound K. The dynamics of the shift X is, according

to Theorem 3.3,

dXt = (Xtrt + Ct − Pmint )dt+ δXt · (dWt + ηtdt), δX ∈ R. (4.3)

The dynamics of the utility process U is deduced easily from that of Zu and X.

Lemma 4.1. Denoting dXt = µXt dt + δXt .dWt, the dynamics of the shift X, the dynamics

of the CRRA shifted utility U(t, z) = Zut
(z−Xt)1−θ

1−θ is dU(t, z) = β(t, z)dt + γ(t, z).dWt, with

local characteristics β(t, z) = −Uz(t, z)(µXt + δt · δXt ) +
1

2
Uzz(t, z)||δXt ||2 + U(t, z)bt

γ(t, z) = −Uz(t, z)δXt + U(t, z)δt

If the shift X is a buffer fund (with pension rate Pmin and contribution rate C) then

µXt = Xtrt + Ct − Pmint + δXt .ηt and δX ∈ R.

Proof. The proof is a straightforward application of the Itô Lemma.

We also provide some useful relations for power utilities and their derivatives of first and

second order and their conjugate: (z −Xt)Uz(t, z) = Zut (z −Xt)
1−θ = (1− θ)U(t, z)

(z −Xt)
2Uzz(t, z) = −θ(z −Xt)Uz(t, z) = −θ(1− θ)U(t, z)

(4.4)

The first term θ
1−θ (Zut )(1/θ)y

θ−1
θ of the dual Ũ is standard, the second term Xty (linear in y)

corresponds to the support function of the convex domain [Xt,+∞[.

1If U is power then necessarily V is power with the same risk aversion coefficient, to ensure the consistency of
the criterion (U, V ) (see [EKHM18]).
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4. Application to dynamic CRRA utilities

4.1 Age-independent pensions

We start with Example 1. Each pensioner receives the same pension amount pt = ρtp
min
t

(with ρ ≥ 1), and has the same dynamic power utility v̄,

v̄(t, p) = Zt
(p− pmint )1−θ

1− θ
,

where Z is a positive adapted process. The social planner aggregates preferences of pensioners

by weighting their utility by their past contributions αcct(a), thus

V (t, ρ) = ωrt v̄(s, ρpmint ) = ωrtZt (pmint )1−θ (ρ− 1)1−θ

1− θ
(4.5)

where ωrt = αc
∫∞
ar
ct(a)n(t, a)da is the total weight of all pensioners living at time t.

4.1.1 Optimal policy

Proposition 4.2. Assume that the shifted power utility U defined by (4.1) is a consistent

utility verifying assumptions of Theorem 3.5. Then the optimal strategy is given by
π∗t = δXt +

1

θ
(F ∗t −Xt)(δ

R
t + ηt) (4.6)

p∗t = pmint + (F ∗t −Xt)

(
Ztω

r
t

Zut N
r
t

) 1
θ

(4.7)

and the optimal fund F ∗ is solution of the dynamics

dF ∗t = dXt + (F ∗t −Xt)

((
rt + (

Ztω
r
t

Zut N
r
t

)
1
θ

)
dt+

1

θ
(δRt + ηt) ·

(
dWt + ηtdt

))
. (4.8)

Note that due to the form of the pension utility v̄, ρft defined by (3.4) is always greater than

the bound 1 and thus ρ∗t = ρft a.s.

The optimal strategy has a particular additive form. The optimal pension is the minimal

pension pmint plus an additional term that is proportional to the ”cushion” (F ∗t −Xt). The

proportionality factor
(
Ztωrt
Zut N

r
t

) 1
θ

is decreasing in the risk aversion parameter θ. The ratio

ωrt
Nr
t

=

∫∞
ar
αcct(a)n(t,a)da∫∞
ar
n(t,a)da

represents the average past contributions of one pensioner at time

t. Thus, giving the same pension to all pensioners yields a risk sharing among pensioners.

The ratio Zt
Zut

represents the relative importance of the pensioners utility with respect to the

buffer fund utility.

Similarly, the optimal portfolio is the portfolio δX of buffer fund shift X plus an additional

term proportional to the ”cushion” (F ∗t − Xt). Again the proportionality factor
(δRt +ηt)

θ is

decreasing in the risk aversion parameter θ, but does not depend on demographic components.

Proof. By a simple derivation with respect to z and ρ, we have Uz(t, z) = Zut (z − Xt)
−θ

25



4. Application to dynamic CRRA utilities

and Vρ(t, ρ) = Ztω
r
sp
min
t (pmint (ρ−1))−θ so that pmint V −1

ρ (t, y) = pmint +
(

y
Ztωrsp

min
t

)− 1
θ
. Thus,

applying Theorem 3.5

p∗t = pmint V −1
ρ (t, Pmint Uz(t, F

∗
t ))

= pmint V −1
ρ (t, Pmint Zut (F ∗t −Xt)

−θ)

= pmint +

(
Zut (F ∗t −Xt)

−θPmint

Ztωrt p
min
t

)− 1
θ

= pmint +

(
Ztω

r
t

Zut N
r
t

) 1
θ

(F ∗t −Xt).

where we used Pmint = pmint N r
t for the last equality. In addition, the optimal investment

strategy is given by

π∗t = −γ
R
x (t, F ∗t ) + Uz(t, F

∗
t )ηt

Uzz(t, F ∗t )

= −−Uzz(t, F
∗
t )δXt + Uz(t, F

∗
t )(δRt + ηt)

Uzz(t, F ∗t )

= δXt +
1

θ
(F ∗t −Xt)(δ

R
t + ηt)

where we used Lemma 4.1. Plugging this strategy into the buffer fund dynamics (1.14) yields

dF ∗t =
(
F ∗t rt + Ct −N r

t p
min
t

(
1 +

(
Ztω

r
t

Zut N
r
t

) 1
θ

(F ∗t −Xt)

))
dt

+
(1

θ
(F ∗t −Xt)(δ

R
t + ηt) + δXt

)
.
(
dWt + ηtdt

)
.

which implies (4.8) by (4.3).

4.1.2 Consistency

The next step consists in verifying the assumptions of Theorem 3.5 and in particular the

consistency condition, that translates into condition on Zu.

Proposition 4.3. Let V be the aggregated pensioners utility (4.5) and U(t, z) = Zut
(z−Xt)1−θ

1−θ .

If (U, V ) is consistent then Zu must be a well-defined solution to the SDE:

− dZu
t = Zu

t

((
(1− θ)rt +

(1− θ)
2θ

||δRt + ηt||2 + θ(Ztω
r
t )

1
θ (Nr

t )
θ−1
θ (Zu

t )
−1
θ

)
dt− δt.dWt

)
. (4.9)

Proof. One the one hand, by application of Lemma 4.1, the buffer fund dynamic utility U
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has the following dynamics
dU(t, z) = β(t, z)dt+ γ(t, z)dWt,

β(t, z) = −Uz(t, z)
(
Xtrt + Ct − Pmin

t + δXt · (ηt + δt)
)

+
1

2
Uzz(t, z)||δXt ||2 + U(t, z)bt

γ(t, z) = −Uz(t, z)δXt + U(t, z)δt.

(4.10)

On the other hand, if (U, V ) is consistent the consistency constraint (3.5) should be satisfied:

β(t, z) = −Uz(t, z)
(
zrt + Ct − Pmint ρ∗t (z)

)
+

1

2
Uzz(t, z)‖π∗t (z)‖2 − V (t, ρ∗t (z)).

By the expression of optimal controls given in Proposition 4.2, the elementary identities (4.4)

and using (4.5) and (4.6) we can rewrite the consistency constraint (3.5) as

β(t, z) = −Uz(t, z)
(
zrt + Ct − Pmint + δXt · (ηt + δt)

)
+

1

2
Uzz(t, z)||δXt ||2

+ U(t, z)

(
(1− θ)N r

t (
Ztω

r
t

Zut N
r
t

)
1
θ − (1− θ)

2θ
‖δR + ηt‖2 − ωrt

Zt
Zut

(
Ztω

r
t

Zut N
r
t

)
1
θ
−1

)
.

Identifying this with (4.10), we obtain

−Uz(t, z)Xtrt + U(t, z)bt = −Uz(t, z)zrt
+U(t, z)

(
(1− θ)N r

t (
Ztωrt
Zut N

r
t

)
1
θ − (1−θ)

2θ ‖δ
R + ηt‖2 − ωrt ZtZut (

Ztωrt
Zut N

r
t

)
1
θ
−1
)

which implies that the drift bt of Zu must satisfy

bt = −(1− θ)rt −
(1− θ)

2θ
‖δR + ηt‖2 − θ(N r

t )1− 1
θ
(ωrtZt
Zut

) 1
θ .

SDE (4.9) is only defined on Zu > 0, due to the term (Zut )−
1
θ in the drift.

Proposition 4.4. Let ξ be the process defined by

ξt = exp

(∫ t

0

(
(1− θ)rt +

(1− θ)
2θ

||δRt + ηt||2 +
‖δs‖2

2

)
ds−

∫ t

0
δs · dWs

)
There exists a unique solution of the SDE (4.9), defined by

Zut = ξ−1
t

(
Z

1
θ
0 −

∫ t

0
(N r

s )1− 1
θ (Zsω

r
sξs)

1
θ ds

)θ
, ∀t ∈ [0, τZ [, (4.11)

where τZ the first hitting time of 0 satisfies

τZ = inf{t ;

∫ t

0
(N r

s )1− 1
θ (
Zs
Z0
ωrsξs)

1
θ ds ≥ 1}. (4.12)
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Proof. Let Zu be a solution of (4.9) on [0, τ [, with τ = inf{t ≥ 0; Zut = 0}, and denote

r̃t := (1− θ)rt +
(1− θ)

2θ
||δRt + ηt||2, and β̃t := (N r

t )1− 1
θ (Ztω

r
t )

1
θ ,

so that

dZut = −
(
Zut r̃t + θβ̃t(Z

u
t )1− 1

θ
)
dt+ Zut δt · dWt.

This equation may be simplified by the following change of variables:

Z̄t := Zut exp

(∫ t

0

(
r̃s +

‖δs‖2

2

)
ds−

∫ t

0
δs · dWs

)
= Zut ξt

Then,
1

θ
(Z̄t)

1
θ
−1dZ̄t = −βtξ

1
θ
t dt,

i.e

(Z̄t)
1
θ − (Z̄0)

1
θ = −

∫ t

0
βsξ

1
θ
s ds,

and thus

Zut = ξ−1
t

(
Z

1
θ
0 −

∫ t

0
(N r

s )1− 1
θ (Zsω

r
sξs)

1
θ ds

)θ
,

and τZ verifies (4.12).

The necessary condition for Zu given in Proposition 4.3 is actually a sufficient condition.

4.1.3 Existence of the optimal investment/pension policy

Theorem 4.5. Let Zu be defined as in Proposition 4.4. Then the shifted power dynamic

utilities (U, V ) given by (4.1)-(4.5) are consistent on [0, τZ [, and verify the assumption of

Theorem 3.5 on this interval. Therefore the optimal strategy is given on [0, τZ [ by
π∗t = δXt +

1

θ
(F ∗t −Xt)(δ

R
t + ηt)

p∗t = pmint + (F ∗t −Xt)

(
Ztω

r
t

Zut N
r
t

) 1
θ

.

Furthermore, τZ = inf{t ≥ 0; F ∗t = Xt}.

Observe that p∗ depends on the population dynamics only through the ratio ωrt /N
r
t . Since all

pensioners receive the same pension amount p∗t , there is also an intergenerational risk-sharing

among pensioners.

For t ≥ τZ , Zut = 0 and thus the buffer fund utility U(t, ·) ≡ 0. At this stopping time, the

buffer fund hits the boundary X. In order to stay sustainable, the pension system parameters

have to be updated, for instance by decreasing the sustainability bound Kt, the minimum

pension amount pmint (a) or the importance given to the pensioners’ preferences. Observe that
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thanks to (4.12), the distribution τZ can be approximated numerically. In particular, τZ

decreases with the number of pensioners and the weight of pensioner’s preferences attributed

by the social planner. However, τZ does not depend on the initial buffer fund amount F0,

due to the choice of dynamic power utilities.

Proof of Theorem 4.5. The consistency SDE is verified by Proposition 4.3 and 4.4. It is

straightforward to check Assumption 2.8, since Ū(t, z) = U(t, z −Xt) = z1−θ

1−θ .

Furthermore, Ṽ (t, z) = z + θ
1−θ (ωrtZt(p

min
t )1−θ)

1
θ z1− 1

θ = z + θ
1−θ (ωrtZt)

1
θ

(
z

pmint

)1− 1
θ
, and

it is straightforward to check that Assumption 2.6 is verified. The optimal strategy is then

obtained from Proposition 4.2. By Proposition 4.2, and using the short notation E(
∫ t

0 gs·dWs)

for the Doléans-Dade exponential martingale2

(F ∗t −Xt) =
(
F ∗0−X0

)
exp
(∫ t

0
(rs−(N r

s )1− 1
θ (
Zsω

r
s

Zus
)
1
θ+

1

θ
(δRs +ηs)·ηs

)
ds
)
E
(∫ t

0

1

θ
(δRs +ηs

)
·dWs

)
,

and by Proposition 4.3,

Zut = Zu0 exp
(
−
∫ t

0

(
((1− θ)rs +

(1− θ)
2θ

||δRs + ηs||2 + θ(N r
s )1− 1

θ (
Zsω

r
s

Zus
)
1
θ ds
)
E
(∫ t

0
δs · dWs

)
.

Then,

(F ∗t −Xt)(Z
u
t )−

1
θ =

(
F ∗0 −X0

)
(Zu0 )−

1
θ exp

(1

θ

∫ t

0
(rs+

1

2
||δ⊥s − ηs||2)ds−

∫ t

0

1

θ
(δ⊥s −ηs) ·dWs

)
.

The previous equation can be rewritten as

(F ∗t −Xt)(Z
u
t )
−1
θ =

(
F ∗0 −X0

)
(Zu0 )

−1
θ (Yt)

−1
θ ,

where we recognize the state price density process Y

Yt = exp

(
−
∫ t

0
rsds

)
E
(∫ t

0
(δ⊥s − ηs) · dWs

)
.

In particular τZ = inf{t ≥ 0; F ∗t = Xt}.

Section 4.2 explains how to extend the results obtained for Example 1 to Example 2.

4.2 Age-dependent pensions

In Example 2 of age-dependent pension and utility v̄, the aggregate utility of pension V is a

complex aggregation between cohorts given by (2.8)

V (t, ρ) =

∫ ∞
ar

v̄(t, a, ρ pret(ar + t− a)e
∫ t
ar+t−a λudu)n(t, a)da.

2E(
∫ t

0
gs · dWs) := exp

(∫ t

0
gs · dWs − 1

2

∫ t

0
||gs||2ds

)
.
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4. Application to dynamic CRRA utilities

We assume that pensioner utility depends on the age a through the shift pmin(t, a) in the

shifted power utility

v̄(t, a, p) = Zt
(p− pmint (a))1−θ

1− θ
and v(t, a, ρ) = (pmint (a))1−θZt

(ρ− 1)1−θ

1− θ
.

Therefore in the case of power utility, the aggregate utility of pension has the following

multiplicative form

V (t, ρ) = ω̃rtZt
(ρ− 1)1−θ

1− θ
, with ω̃rt =

∫ ∞
ar

(pmint (a))1−θn(t, a)da.

Observe that the problem is formulated similarly than in Example 1, with a different weight

ω̃rt and in this case Pmint =
∫∞
ar
pmin(t, a)n(t, a)da. Thus similar computations as in Section

4.1 yield

ρ∗t = V −1
ρ (t, Pmint Uz(t, F

∗
t ))

= V −1
ρ (t, Pmint Zut (F ∗t −Xt)

−θ)

= 1 +

(
Zut (F ∗t −Xt)

−θPmint

Ztω̃rt

)− 1
θ

= 1 + (F ∗t −Xt)

(
Zt
Zut

∫∞
ar

(pmint (y))1−θn(t, y)dy∫∞
ar
pmint (y)n(t, y)dy

) 1
θ

.

Therefore the optimal strategy in this Example 2 with CRRA utility is (on [0, τZ [)
π∗t = δXt +

1

θ
(F ∗t −Xt)(δ

R
t + ηt)

p∗t (a) = pmint (a)
(

1 + (F ∗t −Xt)

(
Zt
Zut

∫∞
ar

(pmint (y))1−θn(t, y)dy∫∞
ar
pmint (y)n(t, y)dy

) 1
θ )
.

Observe that in Examples 1 and 2, the portfolio are the same. What differs are the pensions.

Nevertheless if pmint (a) = pmint does not depend on the age, then the optimal pension p∗t (a)

simplifies in p∗t (a) = p∗t = pmint + (F ∗t −Xt)
(
Zt
Zut

) 1
θ
. It is coherent with Example 1 since it

corresponds to the particular case of Example 1 in which each pensioner has weight 1, that

is ωrt = N r
t .

The increase of the pension amount with age depends on the indexation rate λt in pmint (a) and

on the optimal adjustment ρ∗t = 1+(F ∗t −Xt)

(
Zt
Zut

∫∞
ar

(pmint (y))1−θn(t,y)dy∫∞
ar
pmint (y)n(t,y)dy

) 1
θ

. As in Example 1,

ρ∗ still depends on the importance attributed to the pensioners’ preferences with respect to

Zu. The pension can also be written as follows, to make appear the relative weight of cohort
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a, captured through pmint (a), with respect to the other cohorts:

p∗t (a) = pmint (a) + (F ∗t −Xt)

 Zt
Zut

∫∞
ar

(
pmint (y)

pmint (a)
)1−θn(t, y)dy∫∞

ar
(
pmint (y)

pmint (a)
)n(t, y)dy


1
θ

.

Conclusion This paper designs a social planner’s dynamic decisions criterion under sus-

tainability, adequacy and fairness constraints. The optimal investment/pension policy is

derived when the social planner can invest in/borrow from a buffer fund, with the aim to

provide a better demographic and financial risk-sharing across generations. This flexible

modeling can be easily extended to heterogenous cohorts or open populations, thus consid-

ering also intra generational risk sharing.

The explicit computations for the optimal policies allows these theoretical results to be ap-

plied to an empirical setting with real data. For instance, an interesting application will

consist in computing and analyzing actuarial fairness criteria for each generation, and to test

the impact of demographic shocks (such as the ”baby boom”) on optimal contribution/benefit

plans.
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hétérogènes structurées par âge. Application aux processus auto-excitants
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