Climate Risk Metrics & Portfolio Construction

Amundi Quantitative Research*

Inès Barahhou, Théo Le Guenedal, Thierry Roncalli & Takaya Sekine

*Amundi Asset Management¹, France

March 2022

¹The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.
Amundi Research Project

1. Portfolio Construction with Climate Risk Measures, January 2022
2. Net Zero Carbon Metrics, February 2022
3. The Shift from Carbon Emissions to Net Zero Carbon Metrics on Portfolio Construction, March 2022
4. Multi-Period Portfolio Optimization & Application to Portfolio Decarbonization, March 2022
5. The Green Risk Premium & The Performance(s) of ESG Investing, March 2022
6. The Impact of Net Zero on Capital Allocation and Equity Portfolio Management, Forthcoming
7. The Impact of Net Zero on Bond Portfolio Management, Forthcoming

https://research-center.amundi.com
The puzzle

- Portfolio decarbonization
- Portfolio alignment

Academic findings

- Portfolio decarbonization is easy
- Portfolio alignment is easy
- The cost of portfolio alignment may be low

Asset owners & managers

- Portfolio decarbonization is easy
- Portfolio alignment is difficult
- The cost of portfolio alignment may be high

Asset allocation \Rightarrow Portfolio weights x_i

Two visions of asset management

\[\begin{align*}
\text{Asset allocation} & \Rightarrow \text{Portfolio weights } x_i \\
\text{Asset allocation} & \Rightarrow \begin{cases}
\text{Capital allocation} \\
\text{Economy financing}
\end{cases}
\end{align*}\]
Carbon emissions

The GHG Protocol corporate standard classifies a company’s greenhouse gas emissions in three scopes (*):

- **Scope 1**: Direct GHG emissions (◦)
- **Scope 2**: Consumption of purchased energy (○○)
- **Scope 3**: Other indirect GHG emissions (●●)

 - **Scope 3 upstream**: emissions associated to the supply side
 - First tier direct (●)
 - Tier 2 and 3 suppliers (●●)

 - **Scope 3 downstream**: emissions associated with the product sold by the entity
 - Use of the product (●●●)
 - Waste disposal & recycling (●●●●)

(*) Measurement robustness: from ○○○○ (very high) to ●●●● (very low)
Some preliminary concepts
Portfolio Decarbonization & Alignment
Net Zero Carbon Metrics

Carbon emissions

Figure: Total absolute scopes per GICS sector in GtCO$_2$e

Table: Scope 1 + 2 vs. scope 3

<table>
<thead>
<tr>
<th>Sector</th>
<th>SC_3</th>
<th>SC_{1+2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Services</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Consumer Discretionary</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Consumer Staples</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Financials</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Health Care</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Industrials</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Real Estate</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>
Carbon intensity vs emissions

Emissions (log scale, tCO$_2$e)

Intensity(*) (log scale, tCO$_2$e/$ mn)

(*) Carbon intensity = carbon emissions / output (e.g., revenues)
Table: Examples of carbon emissions and intensity

<table>
<thead>
<tr>
<th>Company</th>
<th>Emission (in tCO₂e)</th>
<th>Revenue (in $ mn)</th>
<th>Intensity (in tCO₂e/$ mn)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scope 1</td>
<td>Scope 2</td>
<td>Scope 3</td>
</tr>
<tr>
<td>Alphabet</td>
<td>74462</td>
<td>5116949</td>
<td>7166240</td>
</tr>
<tr>
<td>Amazon</td>
<td>5760000</td>
<td>5500000</td>
<td>20054722</td>
</tr>
<tr>
<td>Apple</td>
<td>50463</td>
<td>862127</td>
<td>27618943</td>
</tr>
<tr>
<td>BP</td>
<td>49199999</td>
<td>5200000</td>
<td>103840194</td>
</tr>
<tr>
<td>Danone</td>
<td>722122</td>
<td>944877</td>
<td>28969780</td>
</tr>
<tr>
<td>Enel</td>
<td>69981,891</td>
<td>5365386</td>
<td>8726973</td>
</tr>
<tr>
<td>Juventus</td>
<td>6665</td>
<td>15739</td>
<td>35842</td>
</tr>
<tr>
<td>LVMH</td>
<td>67613</td>
<td>262609</td>
<td>11853749</td>
</tr>
<tr>
<td>Microsoft</td>
<td>113414</td>
<td>3556553</td>
<td>5977488</td>
</tr>
<tr>
<td>Nestle</td>
<td>3291303</td>
<td>3206495</td>
<td>61262078</td>
</tr>
<tr>
<td>Netflix</td>
<td>38481</td>
<td>145443</td>
<td>1900283</td>
</tr>
<tr>
<td>Total</td>
<td>40909135</td>
<td>3596127</td>
<td>49831487</td>
</tr>
<tr>
<td>Volkswagen</td>
<td>4494066</td>
<td>5973894</td>
<td>65335372</td>
</tr>
</tbody>
</table>
Carbon intensity

Table: The case of Danone (total emissions breakdown)

<table>
<thead>
<tr>
<th>Scope</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase of goods and services: Agriculture - milk</td>
<td>35.50%</td>
<td>36.90%</td>
</tr>
<tr>
<td>Purchase of goods and services: Agriculture - dairy ingredients</td>
<td>15.40%</td>
<td>15.10%</td>
</tr>
<tr>
<td>Purchase of goods and services: Agriculture - other raw materials</td>
<td>9.00%</td>
<td>8.40%</td>
</tr>
<tr>
<td>Purchase of goods and services: Packaging</td>
<td>10.30%</td>
<td>9.60%</td>
</tr>
<tr>
<td>Purchase of goods and services: Purchase of finished products</td>
<td>5.60%</td>
<td>6.20%</td>
</tr>
<tr>
<td>Scope 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstream transportation and distribution of goods</td>
<td>1.40%</td>
<td>1.20%</td>
</tr>
<tr>
<td>Downstream transportation and distribution of goods</td>
<td>8.10%</td>
<td>6.20%</td>
</tr>
<tr>
<td>Use of sold products</td>
<td>7.10%</td>
<td>7.20%</td>
</tr>
<tr>
<td>End-of-life treatment of sold products</td>
<td>0.90%</td>
<td>3.00%</td>
</tr>
<tr>
<td>Fuel and energy related activities</td>
<td>1.20%</td>
<td>1.10%</td>
</tr>
<tr>
<td>Waste generated in operations</td>
<td>0.60%</td>
<td>0.60%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agricultural emissions breakdown</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>59.20%</td>
<td>61.10%</td>
</tr>
<tr>
<td>Dairy ingredients</td>
<td>25.70%</td>
<td>25.00%</td>
</tr>
<tr>
<td>Other raw materials</td>
<td>15.10%</td>
<td>13.90%</td>
</tr>
</tbody>
</table>

Source: Danone, Exhaustive 2020 Environmental Data.
Portfolio decarbonization

- The optimization problem is:

\[x^*(\mathcal{R}) = \arg \min \frac{1}{2} (x - b)^T \Sigma (x - b) \]

s.t. \[\begin{align*} 1^n x &= 1 \\
 x &\geq 0^n \\
 \sum_{i=1}^n x_i \cdot CI_i &\leq (1 - \mathcal{R}) \cdot CI(b) \end{align*} \]

where \(x \) is the portfolio and \(b \) is the benchmark portfolio

- \(\mathcal{R} \) is the reduction rate of the carbon intensity

- The underlying idea is to obtain a decarbonized portfolio \(x^* \) such that the tracking error with respect to the benchmark \(b \) is the lowest

- The benchmark \(b \) can be a current portfolio (active management) or an index portfolio (passive management)
Figure: Impact of the carbon scope on the tracking error volatility (S&P 500 index, October 2021)
Portfolio alignment

Paris-aligned benchmarks

- A year-on-year self-decarbonization of 7% on average per annum, based on **scope 1, 2 and 3 emissions** ⇒ postponed in 2023? 2024? 2025?
- A minimum carbon intensity reduction \mathcal{R}^- compared to the investable universe
- A minimum exposure to sectors highly exposed to climate change:
 1. Narrow measure of HCIS (non official, e.g. $\approx 19\%$ of the S&P 500)
 2. Broad measure of HCIS (official, e.g. $\approx 55\%$ of the S&P 500)
- Issuer exclusions (controversial weapons and societal norms violators)
- **Minimum green share revenue**

<table>
<thead>
<tr>
<th>CTB</th>
<th>$\mathcal{R}^- = 30%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAB</td>
<td>$\mathcal{R}^- = 50%$</td>
</tr>
</tbody>
</table>
Decarbonization pathway

Figure: Decarbonization pathway of PAB labels (base year = 2020)

Table: Reduction $\mathcal{R}(2020, t)$

<table>
<thead>
<tr>
<th>Year</th>
<th>CTB</th>
<th>PAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>30.0%</td>
<td>50.0%</td>
</tr>
<tr>
<td>2022</td>
<td>34.9%</td>
<td>53.5%</td>
</tr>
<tr>
<td>2023</td>
<td>39.5%</td>
<td>56.8%</td>
</tr>
<tr>
<td>2024</td>
<td>43.7%</td>
<td>59.8%</td>
</tr>
<tr>
<td>2025</td>
<td>47.6%</td>
<td>62.6%</td>
</tr>
<tr>
<td>2026</td>
<td>51.3%</td>
<td>65.2%</td>
</tr>
<tr>
<td>2027</td>
<td>54.7%</td>
<td>67.7%</td>
</tr>
<tr>
<td>2028</td>
<td>57.9%</td>
<td>69.9%</td>
</tr>
<tr>
<td>2029</td>
<td>60.8%</td>
<td>72.0%</td>
</tr>
<tr>
<td>2030</td>
<td>63.6%</td>
<td>74.0%</td>
</tr>
<tr>
<td>2035</td>
<td>74.7%</td>
<td>81.9%</td>
</tr>
<tr>
<td>2040</td>
<td>82.4%</td>
<td>87.4%</td>
</tr>
<tr>
<td>2045</td>
<td>87.7%</td>
<td>91.2%</td>
</tr>
<tr>
<td>2050</td>
<td>91.5%</td>
<td>93.9%</td>
</tr>
</tbody>
</table>
Optimization problem

We have:

\[x^*(t) = \arg \min_{x(t)} \frac{1}{2} \sigma^2(x(t) | b(t)) + \lambda \tau(x(t) | x^*(t-1)) \]

s.t. \[
\begin{align*}
1^\top_n x(t) &= 1 \\
 x(t) &\geq 0_n \\
CI(x(t)) &\leq (1 - R(t_0, t)) \cdot CI(b(t_0)) \\
HCIS(x(t)) &\geq \varphi \cdot HCIS(b(t))
\end{align*}
\]

where \(\lambda \geq 0, \sigma(x(t) | b(t)) \) is the tracking error risk and \(\tau(x(t) | x^*(t-1)) \) is the one-way turnover of the portfolio between \(t-1 \) and \(t \)

\(\Rightarrow \) Dynamic rebalancing (e.g., every quarter)
The scope 3 issue (which scope 3?)

Figure: Tracking error of CTB and PAB labels when implementing the broad HCIS constraint (S&P 500 index, October 2021)
Impact of the scope 3

Figure: Breakdown of the scope 1 + 2 + 3 carbon intensity (Eurostoxx 50 index)
Impact of the reduction rate R on sector allocation

Figure: HCIS constraints do not help to keep strategic sectors in the allocation (Eurostoxx 50 index)
Impact of the reduction rate \mathcal{R} on green share revenues

Figure: Average green share (Eurostoxx 50 index)
Impact of the reduction rate R on diversification

Figure: Herfindahl index (Eurostoxx 50 index)

- Blue: Company
- Orange: GICS Sector
- Green: GICS Industry
- Purple: GICS Subindustry

Graph:
- Y-axis: Effective number of bets
- X-axis: Carbon Intensities reduction rate
- Percentage reduction rates from 0% to 90%
Some preliminary concepts

Portfolio Decarbonization & Alignment

Net Zero Carbon Metrics

Portfolio decarbonization
Portfolio alignment

Comparison of CTB, PAB and IEA NZE scenarios

Figure: Utilities (Eurostoxx 50 index)

Figure: Construction Materials (Eurostoxx 50 index)

CTB and PAB approaches decarbonize faster the strategic sectors than expected by IEA!
The arithmetic of net zero

“Using global mean surface air temperature, as in AR5, gives an estimate of the remaining carbon budget of 580 GtCO$_2$e for a 50% probability of limiting warming to 1.5°C, and 420 GtCO$_2$e for a 66% probability (medium confidence)” (IPCC, 2018).

Pr\{T \leq 1.5°C \mid CB(2019, 2050) \leq 580 \text{ GtCO}_2\text{e}\} \geq 50%\\
Pr\{T \leq 1.5°C \mid CB(2019, 2050) \leq 420 \text{ GtCO}_2\text{e}\} \geq 66%\\
Pr\{T \leq 1.5°C \mid CB(2019, 2050) \leq 300 \text{ GtCO}_2\text{e}\} \geq 83%\\

Remark

- Current carbon emissions \(\approx 36 \text{ GtCO}_2\text{e} \text{ per annum}\)
- \(580/36 = 16 \text{ years (2035)}\)
The arithmetic of net zero

Figure: CO₂ emissions in the IEA NZE scenario

\[\text{Carbon budget} \]

\[\mathcal{CB}_i(t_0, t) = \int_{t_0}^{t} \mathcal{CE}_i(s) \, ds \]

NZE scenario

\[\left\{ \begin{array}{l}
\mathcal{CB}(2019, 2050) \leq 580 \text{ GtCO}_2\text{e} \\
\mathcal{CE}(2050) \approx 0 \text{ GtCO}_2\text{e}
\end{array} \right. \]
The arithmetic of net zero

Table: IEA NZE global scenario (in GtCO$_2$e)

<table>
<thead>
<tr>
<th>Year</th>
<th>2019</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross emissions</td>
<td>35.90</td>
<td>30.30</td>
<td>21.50</td>
<td>13.70</td>
<td>7.77</td>
<td>4.30</td>
<td>1.94</td>
</tr>
<tr>
<td>CCS</td>
<td>0.00</td>
<td>−0.06</td>
<td>−0.32</td>
<td>−0.96</td>
<td>−1.46</td>
<td>−1.80</td>
<td>−1.94</td>
</tr>
<tr>
<td>Net emissions</td>
<td>35.90</td>
<td>30.24</td>
<td>21.18</td>
<td>12.74</td>
<td>6.31</td>
<td>2.50</td>
<td>0.00</td>
</tr>
<tr>
<td>Reduction (in %)</td>
<td>0.00</td>
<td>15.60</td>
<td>40.11</td>
<td>61.84</td>
<td>78.36</td>
<td>88.02</td>
<td>94.60</td>
</tr>
</tbody>
</table>

By assuming linear interpolation, we find the following values for $CB_i(2019, 2050)$ in in GtCO$_2$e:

- **Global scenario**
 - Gross: 512.35
 - CCS: −27.85
 - Net: 484.5

- **Sectoral scenario**
 - Electricity: 138.225
 - Industry: 158.99
 - Transport: 133.57
 - Buildings: 42.685
 - Other: 11.185

Table: IEA NZE sectoral scenario (in GtCO$_2$e)

<table>
<thead>
<tr>
<th>Year</th>
<th>2019</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>13.80</td>
<td>10.80</td>
<td>5.82</td>
<td>2.12</td>
<td>−0.08</td>
<td>−0.31</td>
<td>−0.37</td>
</tr>
<tr>
<td>Industry</td>
<td>8.90</td>
<td>8.14</td>
<td>6.89</td>
<td>5.25</td>
<td>3.48</td>
<td>1.80</td>
<td>0.52</td>
</tr>
<tr>
<td>Transport</td>
<td>8.29</td>
<td>7.23</td>
<td>5.72</td>
<td>4.11</td>
<td>2.69</td>
<td>1.50</td>
<td>0.69</td>
</tr>
<tr>
<td>Buildings</td>
<td>3.01</td>
<td>2.43</td>
<td>1.81</td>
<td>1.21</td>
<td>0.69</td>
<td>0.32</td>
<td>0.12</td>
</tr>
<tr>
<td>Other</td>
<td>1.91</td>
<td>1.66</td>
<td>0.91</td>
<td>0.09</td>
<td>−0.46</td>
<td>−0.82</td>
<td>−0.96</td>
</tr>
</tbody>
</table>
Net zero emission tools

- Absolute carbon emissions
- Carbon target
- Carbon trend
- Carbon budget

Net zero emission metrics

Static NZE metrics
- Gap
- Slope
- Budget
- Duration

Dynamic NZE metrics
- Time contribution
- Velocity
- Zero-velocity & burn-out scenarios
The PAC framework

Three questions:

- Is the trend of the issuer in line with the net zero emissions scenario? ⇒ Participation
- Is the commitment of the issuer to fight climate change ambitious? ⇒ Ambition
- Is the target setting of this issuer relevant and robust? ⇒ Credibility

The three pillars depends on the carbon trajectories $CE_i(t)$, $CE_i^{Trend}(t)$, $CE_i^{Target}(t)$ and $CE_i^{nze}(t)$ where:

1. $CE_i(t)$ is the time series of historical carbon emissions
2. $CE_i^{Trend}(t)$ and $CE_i^{Target}(t)$ are the estimated carbon emissions deduced from the trend model and the target
3. $CE_i^{nze}(t)$ is the market-based NZE scenario

t_{Base} is the base date, t_{Last} is the last reporting date and t_{nze} is the target date of the NZE scenario
The PAC framework

Figure: Illustration of the participation, ambition and credibility pillars
Table: The three pillars of an effective NZE strategy

<table>
<thead>
<tr>
<th>Pillar</th>
<th>Metric</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>Gap</td>
<td>$\text{Gap}i^{\text{Trend}}(t{\text{L},\text{ast}}) \leq 0$</td>
</tr>
<tr>
<td></td>
<td>Reduction</td>
<td>$\mathcal{R}i(t{\text{base}}, t_{\text{L},\text{ast}}) < 0$</td>
</tr>
<tr>
<td></td>
<td>Time contribution</td>
<td>$\mathcal{T}C_i(t_{\text{L},\text{ast}} + 1</td>
</tr>
<tr>
<td></td>
<td>Trend</td>
<td>$\beta_{i,1} < 0$ and $R^2_i > 50%$</td>
</tr>
<tr>
<td></td>
<td>Velocity</td>
<td>$\mathcal{V}i^{(1)}(t{\text{L},\text{ast}}) \leq 0$</td>
</tr>
<tr>
<td>Ambition</td>
<td>Budget</td>
<td>$\mathcal{C}B_i^{\text{Target}}(t_{\text{L},\text{ast}}, t_{\text{nz}}) \leq \mathcal{C}B_i^{\text{Trend}}(t_{\text{L},\text{ast}}, t_{\text{nz}})$</td>
</tr>
<tr>
<td></td>
<td>Duration</td>
<td>$\tau_i^{\text{Target}} \leq t_{\text{nz}}$</td>
</tr>
<tr>
<td></td>
<td>Gap</td>
<td>$\text{Gap}i^{\text{Target}}(t{\text{nz}}) \leq 0$</td>
</tr>
<tr>
<td></td>
<td>Budget</td>
<td>$\mathcal{C}B_i^{\text{Target}}(t_{\text{L},\text{ast}}, t_{\text{nz}}) > \mathcal{C}B_i^{\text{Trend}}(t_{\text{L},\text{ast}}, t_{\text{nz}})$</td>
</tr>
<tr>
<td></td>
<td>Burn-out Scenario</td>
<td>$\mathcal{B}O_i(t_{\text{L},\text{ast}} + 1, \mathcal{C}E_i^{\text{nz}}(t_{\text{nz}})) \geq \phi_{\mathcal{BO}} \cdot \mathcal{C}E_i(t_{\text{L},\text{ast}})$</td>
</tr>
<tr>
<td></td>
<td>Duration</td>
<td>$\tau_i^{\text{Trend}} \leq t_{\text{nz}}$</td>
</tr>
<tr>
<td>Credibility</td>
<td>Gap</td>
<td>$\text{Gap}i^{\text{Trend}}(t{\text{nz}}) \leq 0$</td>
</tr>
<tr>
<td></td>
<td>Gap</td>
<td>$\text{Gap}i^{\text{Trend}}(t{\text{nz}}) \leq \text{Gap}i^{\text{Target}}(t{\text{nz}})$</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>$\overline{\text{Slope}}i(t{\text{nz}}) \geq \text{Slope}i^{\text{Target}}(t{\text{nz}})$</td>
</tr>
<tr>
<td></td>
<td>Trend</td>
<td>$R^2_i > 50%$</td>
</tr>
<tr>
<td></td>
<td>Zero-velocity</td>
<td>$\mathcal{Z}V_i^{(1)}(t_{\text{L},\text{ast}} + 1) \geq \phi_{\mathcal{ZV}} \cdot \mathcal{C}E_i(t_{\text{L},\text{ast}})$</td>
</tr>
</tbody>
</table>
The PAC scoring system

Figure: Examples

(a) Model student?

(b) Black sheep?

(c) Shy child?

(d) Greenwashing?

Figure: Rank correlation matrix

\[
\begin{array}{ccc}
\cal{P}\cal{S}_i & \cal{A}\cal{S}_i & \cal{C}_i \\
100\% & -94\% & 92\% \\
100\% & -89\% & 100\% \\
\end{array}
\]
Empirical results

Figure: Carbon emissions, trends and targets and NZE scenario (Company A)

Empirical results

Figure: Carbon emissions, trends and targets and NZE scenario (Company C)

Some preliminary concepts
Portfolio Decarbonization & Alignment
Net Zero Carbon Metrics

Empirical results

Figure: Carbon emissions, trends and targets and NZE scenario (global analysis)

Empirical results

Figure: Probability to reach 1.5°C

Source: Le Guenedal et al. (2022).
Comparison of NZE portfolios

We consider 4 climate risk metrics:

1. the Scope 1 + 2 + 3 carbon intensity
2. the Scope 1 + 2 + 3 carbon emissions
3. the projected Scope 1 + 2 + 3 carbon intensity (linear trend model)
4. the projected Scope 1 + 2 + 3 carbon emissions (linear trend model)
Comparison of NZE portfolios

Figure: Active share between the NZE portfolios (MSCI EMU)
Comparison of NZE portfolios

Figure: Active share between the NZE portfolios (MSCI USA)
Scope 3 ⇒ portfolio decarbonization is more difficult
Negative correlation between green revenues and carbon emissions/intensity
HCIS constraint ⇒ sector distortion (Financials/Luxury solution)
Solution with carbon emissions ≠ solution with carbon intensity
Solution with carbon trends ≠ solution with historical figures

Negative externalities: food & beverages, utilities, construction materials

Portfolio decarbonization ≠ portfolio alignment
Asset allocation issue: Diversification ↘

Gap between finance and economy decarbonization ↗
What could be a NZE portfolio alignment policy?

Two building blocks of NZE portfolios

Decarbonized portfolio
- Decarbonization pathway
- Top-down approach
- Portfolio optimization
- Carbon metrics

Green solution portfolio
- Financing the transition
- Bottom-up approach
- Security selection
- \neq Carbon metrics

$\alpha\%$ $\quad + \quad $ $(1 - \alpha)\%$
Disclaimer

This material is provided for information purposes only and does not constitute a recommendation, a solicitation, an offer, an advice or an invitation to purchase or sell any fund, SICAV, sub-fund, (“the Funds”) described herein and should in no case be interpreted as such.

This material, which is not a contract, is based on sources that Amundi considers to be reliable. Data, opinions and estimates may be changed without notice.

Amundi accepts no liability whatsoever, whether direct or indirect, that may arise from the use of information contained in this material. Amundi can in no way be held responsible for any decision or investment made on the basis of information contained in this material.

The information contained in this document is disclosed to you on a confidential basis and shall not be copied, reproduced, modified, translated or distributed without the prior written approval of Amundi, to any third person or entity in any country or jurisdiction which would subject Amundi or any of “the Funds”, to any registration requirements within these jurisdictions or where it might be considered as unlawful. Accordingly, this material is for distribution solely in jurisdictions where permitted and to persons who may receive it without breaching applicable legal or regulatory requirements.

Not all funds, or sub-funds will be necessarily be registered or authorized in all jurisdictions or be available to all investors.

Investment involves risk. Past performances and simulations based on these, do not guarantee future results, nor are they reliable indicators of futures performances.

The value of an investment in the Funds, in any security or financial product may fluctuate according to market conditions and cause the value of an investment to go up or down. As a result, you may lose, as the case may be, the amount originally invested.

All investors should seek the advice of their legal and/or tax counsel or their financial advisor prior to any investment decision in order to determine its suitability.

It is your responsibility to read the legal documents in force in particular the current French prospectus for each fund, as approved by the AMF, and each investment should be made on the basis of such prospectus, a copy of which can be obtained upon request free of charge at the registered office of the management company.

This material is solely for the attention of institutional, professional, qualified or sophisticated investors and distributors. It is not to be distributed to the general public, private customers or retail investors in any jurisdiction whatsoever nor to “US Persons”.

Moreover, any such investor should be, in the European Union, a “Professional” investor as defined in Directive 2004/39/EC dated 21 May 2004 on markets in financial instruments (“MIFID”) or as the case may be in each local regulations and, as far as the offering in Switzerland is concerned, a “Qualified Investor” within the meaning of the provisions of the Swiss Collective Investment Schemes Ordinance of 23 June 2006 (CISA), the Swiss Collective Investment Schemes Ordinance of 22 November 2006 (CISO) and the FINMA’s Circular 08/8 on Public Offering within the meaning of the legislation on Collective Investment Schemes of 20 November 2008. In no event may this material be distributed in the European Union to non “Professional” investors as defined in the MIFID or in each local regulation, or in Switzerland to investors who do not comply with the definition of “qualified investors” as defined in the applicable legislation and regulation.

Amundi, French joint stock company (“Société Anonyme”) with a registered capital of € 1 086 262 605 and approved by the French Securities Regulator (Autorité des Marchés Financiers-AMF) under number GP 04000036 as a portfolio management company,

90 boulevard Pasteur, 75015 Paris-France
437 574 452 RCS Paris.

www.amundi.com