Theophile Adenot, Marie Briere, Pierre Counathe, Mathieu Jouanneau, Tegwen Le Berthe, Theo Le Guenedal

Amundi Asset Management¹, Ecole Polytechnique, CREST-ENSAE, IP Paris

21/03/2022

¹The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.
Explicit need of climate-related risk stress-testing methodology required by the ESMA (2022)

An already rich literature on the topic:

- Climate stress-testing frameworks and methodologies: e.g. Alogoskoufis et al. (2021), Battiston et al. (2017), and Jung et al. (2021)
- Cahen-Fourot et al. (2019) use an Input-Output (IO) model to assess the exposure of economic systems to capital stranding cascades

To answer this need we propose one that

- Accounts for worldwide supply-chain interactions and,
- Integrates firm level carbon intensity metric for carbon price shock (Bouchet & Le Guenedal, 2020)
Carbon price scenario

We consider 3 scenarios corresponding broadly to the average suggested price for the scenario x date:

- USD 50 ~ SSP2-26 (1.8°C) in 2030
- USD 100 ~ SSP2-19 (1.5°C) in 2030
- USD 300 ~ SSP2-19 (1.5°C) in 2040 to illustrate the framework.

But

The methodology is compatible with regional tax rates.
Leontief production function

- Aims at quantifying and representing the interdependencies between various sectors in an economy or different regional economies.
- This methodologies builds on Leontief Input output models (Leontief, 1970)
- We consider a fixed-proportions production function.

Fixed-proportions

In this framework, each sector j makes use of the inputs from sector i in the fixed proportion:

$$ a_{ij} = \frac{x_{ij}}{x_j} \quad 1 \leq i \leq n \quad 1 \leq j \leq n $$

where x_j is the production of the j-th sector and $x_{i,j}$ denotes the quantity sold by the i-th sector to the j-th sector.
WIOD overview

Table: Illustration of World Input-Output database (WIOD) dataset (normalized in %)

Sectors	USA	(1) Crop and animal production	(2) Forestry and logging	(3) Fishing and aquaculture	...
(1) Crop and animal production	0.159	0.018	0.018		...
(2) Forestry and logging	0.025	0.041	0.041		...
...

Read: “to produce 1 dollar of output, the crop and animal production sector in the United-States buys 0.159 cents of products from itself and 0.018 cents of products from the forestry and logging (in the United States)”
Leontief production function

Assuming:
- y_i, the final demand for sector i, exogenous
- x_i, the production of sector i, and x_{ij} its demand for inputs are endogenous

the Input-Output model can be represented in a matrix form as:

$$X = AX + Y \quad X \in \mathbb{R}^{n \times 1} \quad A \in \mathbb{R}^{n \times n} \quad Y \in \mathbb{R}^{n \times 1}$$

(2)

where:

$$X \equiv \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad A \equiv \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \quad Y \equiv \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

and (2) becomes:

$$X = (I - A)^{-1} Y$$

(3)

The matrix $(I - A)^{-1}$ is called the Leontief inverse. The element in position ij of this matrix represents the impact of a change in final demand in the j-th sector on the i-th sector.
We use the World Input-Output Database (WIOD), lastly updated in 2015 (Timmer et al., 2015). WIOD is widely used by scholars to measure global value chains (see for example Timmer et al., 2014; Wang et al., 2013). It covers 43 countries plus the ‘rest of the world’ region. Our universe of firms is split between 55 private sectors within each country. We are thus dealing with a $(44 \times 55)^2$ matrix.

Value added of the dataset

- Relationships are directed and quantified
- Static, sector/ country level, too many relationships in ROW
Figure: Force-directed (Kamada Kawai) graph representation of the sector Input-Output relationships (WIOD table) in the United States.

Directed graphs (e.g. Kamada Kawai drawing algorithm)

+ Identify communities (or cluster) likely to be homogeneously impacted by shocks (Consumer discretionary high centrality)
+ Picture the direction of relationships (insensitive \rightarrow less intensive?)
 - Require binary input: this chart was built taking in consideration only relations exceeding 1%.
 - can be hard to read with too many agents
Theophile Adenot et al.

Cascading Effects of Carbon Price

Chord Representation USA (internal)

Mapping to GICS and average sector intensity

- Most relationships are relatively weak
- One particular strong connection Mining Quarry → refine petroleum product etc
- Consumer discretionary high centrality
Chord Representation summed over countries

- We strong relationships:
 - USA/CAN, USA/MEX or USA/IRL
 - in Europe DEU/LUX, Germany has high centrality
- The ROW is very central, too many relationships are not well assigned
Environemental externalities

Upstream emissions

The vector of total (direct and indirect) upstream emission intensities M can be calculated using the Leontief inverse (Mardones & Mena, 2020) as:

$$M = (I - A^T)^{-1} \times G$$

where $G = (g_1, \ldots, g_n)^T$ the vector of sector direct GHG emission intensities

Carbon price rate

The amount paid per dollar of output in each sector follows:

$$\mathcal{E} = \varphi \times M$$

where φ is the carbon price in USD/tCO$_2$e, the coefficient ε_i represents the mean carbon cost of a dollar unit of production from the sector i.
Good and service price structure

The idea of Leontief Price structure Model is
⇒ To decompose the price of goods and services offered by each sector
We can write the value added as:

\[v_j = \frac{V_j}{x_j} = p_j - \sum p_i a_{ij} \quad \text{where} \]

- \(p_i \) is the unit prices of sector \(i \)
- \(\sum p_i a_{ij} \) is the input cost of a unit of \(j \)
- \(V_j \) added value (noted \(v_j \) per unit production)

Leontief price model relationship

Following Mardones (2020) Mardones and Mena, 2020 we use under the matrix form:

\[P = A^T P + V \quad \text{and then:} \quad P = [(I - A)^{-1}]^T V \]
Good and service price structure

Baseline price structure

When there is no carbon price (baseline)

\[p_i = (1 + \tau_i) \left(\sum_{j=1}^{n} p_j a_{ij} + \frac{v_i}{v_i = w_l + r_k} \right) \]

, in matrix form:

\[P = (I - (A_\tau)^T)^{-1} V \] (8)

where \(w \) is the price of labor, \(l_i \) is the coefficient of labor intensity, \(r \) is the cost of capital, \(k_i \) is the coefficient of capital intensity. \(V = (v_1, ..., v_n)^T \) the vector of value added in each sector, and the matrix \(A_\tau^T \), is the transpose of the matrix of direct requirements:

\[(A_\tau)^T \equiv \begin{pmatrix} a_{11} + \frac{1}{1+\tau_1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} + \frac{1}{1+\tau_n} \end{pmatrix} \] (9)
Price structure under carbon restriction

Carbon shock price structure

The new unitary price of sector i affected by carbon pricing (p_i^ε) follows:

$$p_i^\varepsilon = (1 + \varepsilon_i)(1 + \tau_i) \left[\sum_{j=1}^{n} p_j^\varepsilon a_{ij} + v_i \right]$$

or in matrix form,

$$P(\varepsilon) = \left[(I - A_\varepsilon)^{-1} \right]^T V$$

(10)

Modified requirement Mardones and Mena, 2020

The matrix A_ε of direct requirements is thus modified to account for the carbon price impact. It includes both carbon price and ad-valorem tax rates (respectively noted ε and τ).

$$(A_\varepsilon)^T \equiv \begin{pmatrix} a_{11} + (1 - \frac{1}{(1+\tau_1)(1+\varepsilon_1)}) & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} + (1 - \frac{1}{(1+\tau_n)(1+\varepsilon_n)}) \end{pmatrix}$$

(11)
Sector/country impact ratio

Price shock vector

Assuming constant sector value added V we can write:

$$P = (I - (A^\tau)^T)^{-1} V \quad \text{and} \quad P(\varepsilon) = [(I - A^{\varepsilon^\tau})^{-1}]^T V$$ \hspace{1cm} (12)

which gives

$$P(\varepsilon) = [(I - A^{\varepsilon^\tau})^{-1}]^T (I - (A^\tau)^T) P$$ \hspace{1cm} (13)

Impact ratio

Assuming the monetary value of what is purchased by consuming sectors constant before and after the introduction of the carbon price we write

$$\mathcal{R}_i = \frac{x_i^\varepsilon}{x_i} = \frac{p_i}{p_i^\varepsilon}$$ \hspace{1cm} (14)
Issuer based direct + indirect emission

Let us consider:

- issuer k part of the i-th sector
- with a direct emission intensity g^k
- the vector of direct plus indirect emission intensities m^k

It can be written as follows:

$$m_i^k = m_i + \left(g^k - g^i \right)$$

(15)

where m_i is the sector direct and indirect (upstream) intensity, g^k is the direct emission intensity of issuer k belonging to sector i.
We then calculate an adapted carbon pricing rate vector ε^k at the issuer level:

$$\varepsilon^k = \varphi \times m^k$$ (16)

Then, the shock at the issuer level can be approximated with:

$$P(\varepsilon^k) = \left[(I - A^\varepsilon_T)^{-1}\right]^T \times (I - A^T_T) \times P$$ (17)

$$R_i^k(\varepsilon^k) = \frac{x_i^\varepsilon^k}{x_i} = \frac{p_i}{p_i^\varepsilon^k} \quad \text{and} \quad ES^k = \frac{\text{EBITDA}^k(0) - \text{EBITDA}^k(\varphi)}{\text{EBITDA}^k(0)} = 1 - R_i^k(\varepsilon^k)$$ (18)

where $R_i^k(\varepsilon^k)$ is the impact ratio measuring the reduction in demand due to the introduction of the carbon price on the issuer k and ES^k the earning shock.
Financial data

1. **Financial data** Firm-level Earnings before Interest, Taxes and Depreciation (EBITDA) are provided by FactSet.

2. **Emission data** We use two types of emission data:
 - **Sector-level GHG emissions**: Sector-level average intensities of GHG emissions (Scope 1) are provided by Exiobase 3. (see (Stadler et al., 2018) for more detail). It covers 43 countries and 5 rest of the World regions split up between 163 sectors.
 - **Issuer-level GHG emission**: Data are provided by Trucost. We retrieve Scope 1 emissions intensity for all firms in our investment universe.

Financial data and carbon intensities are retrieved as of December 2019. Based on the data available, we can provide an estimate of the earning shock for 94% of the firms belonging to the MSCI world Index (covering 96% of the total market capitalization of the index).
Impact ratio of firms

Figure: Earnings shock due to the introduction of a carbon price of USD 50, 100 and 300 per tCO$_2$eq on firms belonging to the MSCI World Index, by sector.

Figure: Relative contributions of GICS sectors earning shocks (USD 50)
Impact ratio of firms

Figure: Earnings shock due to the introduction of a carbon price of USD 50, 100 and 300 per tCO2eq on firms belonging to the MSCI World Index, by sector.
The sensitivity analysis

The sensitivity of the firms’ issuer direct intensity (CI_1) and indirect emissions

$$ES = a + \beta_{\text{direct}} CI_1 + \beta_{\text{indirect}} (m_{i,c} - g_{i,c})$$

where

- $m_{i,c}$ denotes upstream direct and indirect intensities at the WIOD sector i and country c level.
- To account only for indirect upstream emissions, we subtract the average sector intensity $g_{i,c}$ to the $m_{i,c}$ (containing both direct and indirect emission by construction).

Figure: Firms’ earnings shock due to the introduction of a carbon price of USD 50, depending on their idiosyncratic carbon intensity and indirect upstream sector \times country emission intensities, MSCI World.
Let us assume that the firms’ value (EV_k) is proportional to its earnings (Bouchet & Le Guenedal, 2020):

$$EV_k(t) = r_k \times EBITDA^k(t)$$

(19)

where r_k is a (stable) corporate-specific ratio. Thus,

$$\frac{(EV_k(\varphi) - EV_k(0))}{EV_k(0)} = \frac{(EBITDA^k(\varphi) - EBITDA^k(0)) \times r_k}{EBITDA^k(0) \times r_k} = -ES^k$$

(20)

The enterprise value represents the total asset summing over the free-float market capitalization (Equity) and total debt:

$$EV_k = E_k + D_k$$

Assuming that the debt remains constant we have:

$$\Delta EV_k(\varphi) = \Delta E_k(\varphi)$$

(21)

(22)
Impact on index composition

Equity index shock

The shock is fully passed on the equity price such as:

$$\Delta E_k(\varphi) = (R^k_i(\varepsilon^k) - 1) \times EV_k(0)$$ \hspace{1cm} (23)

For each firm, its new weight in the index depends on the experienced earning shock, leading to a shock to its market capitalization.

$$E_k(\varphi) = E_{k,0} - ES_k \times EV_k(0) \quad \text{and} \quad w_k(\varphi) = \frac{E_k(\varphi)}{\sum^N_k E_k(\varphi)}$$ \hspace{1cm} (24)

where $E_k(\varphi)$ is the estimation of float-adjusted market capitalization of the firm k after the introduction of a carbon price φ, and $w_k(\varphi)$ is the corresponding weight in the index.
Table: Sector composition of the MSCI World under a carbon price shock

<table>
<thead>
<tr>
<th>Sector</th>
<th>MSCI World*(%)</th>
<th>USD 50</th>
<th>USD 100</th>
<th>USD 300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>weight (%)</td>
<td>relative change</td>
<td>weight (%)</td>
<td>relative change</td>
</tr>
<tr>
<td>Communication Services</td>
<td>7.4</td>
<td>7.5</td>
<td>1.6%</td>
<td>7.6</td>
</tr>
<tr>
<td>Consumer Discretionary</td>
<td>12.9</td>
<td>12.8</td>
<td>-0.8%</td>
<td>12.6</td>
</tr>
<tr>
<td>Consumer Staples</td>
<td>6.9</td>
<td>6.8</td>
<td>-1.8%</td>
<td>6.7</td>
</tr>
<tr>
<td>Energy</td>
<td>3.1</td>
<td>2.8</td>
<td>-8.6%</td>
<td>2.6</td>
</tr>
<tr>
<td>Financials</td>
<td>13.0</td>
<td>13.5</td>
<td>3.3%</td>
<td>13.9</td>
</tr>
<tr>
<td>Health Care</td>
<td>12.7</td>
<td>12.9</td>
<td>1.5%</td>
<td>13.1</td>
</tr>
<tr>
<td>Industrials</td>
<td>10.0</td>
<td>9.9</td>
<td>-1.3%</td>
<td>9.7</td>
</tr>
<tr>
<td>Information Technology</td>
<td>24.4</td>
<td>25.0</td>
<td>2.2%</td>
<td>25.5</td>
</tr>
<tr>
<td>Materials</td>
<td>4.0</td>
<td>3.8</td>
<td>-4.7%</td>
<td>3.6</td>
</tr>
<tr>
<td>Real Estate</td>
<td>2.8</td>
<td>2.9</td>
<td>2.5%</td>
<td>2.9</td>
</tr>
<tr>
<td>Utilities</td>
<td>2.8</td>
<td>2.3</td>
<td>-18.8%</td>
<td>1.8</td>
</tr>
</tbody>
</table>

* The original MSCI World index composition has been rebased to account for missing data on firms' carbon emissions. We cover 96% of the original index.
Limits and conclusion

Limits of the IO
- Fixed proportions
- Unlabeled relationships (ROW)...
- at a sector/country level only (no company level dispersion)
- Mapping issues (for companies with diverse activities for example)

Modeling assumption
- Price elasticity equal to 1 (should be specific to products)
- Global carbon price
- Cost pass-though equal to 1 (full price reflected to costumer)
- Simplified channeling to the firm value

Improvement of information quality
Supply-chain data propose little information on the nature/strength of connections

Model adaptability
Most these assumptions modeling choices can be relaxed / improved to provide better assessment

References II

Disclaimer

This material is provided for information purposes only and does not constitute a recommendation, a solicitation, an offer, an advice or an invitation to purchase or sell any fund, SICAV, sub-fund, ("the Funds") described herein and should in no case be interpreted as such.

This material, which is not a contract, is based on sources that Amundi considers to be reliable. Data, opinions and estimates may be changed without notice.

Amundi accepts no liability whatsoever, whether direct or indirect, that may arise from the use of information contained in this material. Amundi can in no way be held responsible for any decision or investment made on the basis of information contained in this material.

The information contained in this document is disclosed to you on a confidential basis and shall not be copied, reproduced, modified, translated or distributed without the prior written approval of Amundi, to any third person or entity in any country or jurisdiction which would subject Amundi or any of "the Funds", to any registration requirements within these jurisdictions or where it might be considered as unlawful. Accordingly, this material is for distribution solely in jurisdictions where permitted and to persons who may receive it without breaching applicable legal or regulatory requirements.

Not all funds, or sub-funds will be necessarily be registered or authorized in all jurisdictions or be available to all investors.

Investment involves risk. Past performances and simulations based on these, do not guarantee future results, nor are they reliable indicators of futures performances.

The value of an investment in the Funds, in any security or financial product may fluctuate according to market conditions and cause the value of an investment to go up or down. As a result, you may lose, as the case may be, the amount originally invested.

All investors should seek the advice of their legal and/or tax counsel or their financial advisor prior to any investment decision in order to determine its suitability.

It is your responsibility to read the legal documents in force in particular the current French prospectus for each fund, as approved by the AMF, and each investment should be made on the basis of such prospectus, a copy of which can be obtained upon request free of charge at the registered office of the management company.

This material is solely for the attention of institutional, professional, qualified or sophisticated investors and distributors. It is not to be distributed to the general public, private customers or retail investors in any jurisdiction whatsoever nor to "US Persons".

Moreover, any such investor should be, in the European Union, a "Professional" investor as defined in Directive 2004/39/EC dated 21 May 2004 on markets in financial instruments ("MIFID") or as the case may be in each local regulations and, as far as the offering in Switzerland is concerned, a "Qualified Investor" within the meaning of the provisions of the Swiss Collective Investment Schemes Ordinance of 23 June 2006 (CISA), the Swiss Collective Investment Schemes Ordinance of 22 November 2006 (CISO) and the FINMA’s Circular 08/8 on Public Offering within the meaning of the legislation on Collective Investment Schemes of 20 November 2008. In no event may this material be distributed in the European Union to non “Professional” investors as defined in the MIFID or in each local regulation, or in Switzerland to investors who do not comply with the definition of “qualified investors” as defined in the applicable legislation and regulation.

Amundi, French joint stock company (“Société Anonyme”) with a registered capital of € 1 086 262 605 and approved by the French Securities Regulator (Autorité des Marchés Financiers-AMF) under number GP 04000036 as a portfolio management company,

90 boulevard Pasteur, 75015 Paris-France
437 574 452 RCS Paris.
www.amundi.com