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1 Introduction 

The world’s older population is growing rapidly. According to the United Nations, there was a 
substantial increase of 48% (from 607 to 901 million) of people aged 60 or over between 2000 and 
2015, which might reach nearly 2.1 billion by 2050. Moreover, the “oldest-old” (aged 80 or over) 
population accounted for 14% of old population (aged 60 or over) in 2015 and is expected to triple 
2015’s value by 2050.  

As a result of this demographic shifts and longer life expectancy, increasing lifestyle and health care 
costs, the idea that individuals and households need to plan for their own retirement is gaining a lot 
of attention. On the other hand, low interest rates are putting pressure, pushing consumers alike to 
look for ways to make the most of their assets (€1800 billion in France and $6000 billion in the US for 
the Individual Savings) and optimize their behaviour. As a result, savings behaviour has undergone 
significant changes towards a more efficient use over the last decade. 

As illustrated by the emergence of increasingly differentiated retirement savings patterns, in line with 
new needs and to the subsequent life phases. Meeting the expectations of the insured then requires 
an optimization of the product design, through product features tailored to the savings profiles, for an 
enhanced Customer Experience. 

Savings contracts entitle the policyholder to receive an income stream at maturity for the rest of her 
life, post a waiting period during which savings are invested in financial assets ("Account Value"), and 
benefit from an increasing guaranteed level at a minimum "rollup" rate. The insured is also allowed to 
withdraw a certain amount on a yearly basis during the waiting period. Besides, if the contract contains 
a death benefit, then a certain amount is paid to the beneficiaries in case the policyholder dies during 
the term of the contract. 

Figure 1 
Retirement Savings mechanism 
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2 Customer Experience is significantly different across ages, as illustrated by 
strongly differentiated Savings behaviour patterns 

Savings behaviours have undergone significant changes over the past decade.  Admittedly, the 
objectives of building up savings are diverse, as illustrated below: 

Figure 2 
Retirement Savings objectives 

 
Source : AMF (France) 

 

Still policyholders have made increasing use of their accumulated savings, and this in an accelerated 
way with age. 

Figure 3 
Use of Savings 

 
 
 

 
 

Source LIMRA (USA) 
 

To this end, there are three types of Savings use behaviour patterns, illustrated by the frequency and 
withdrawals amounts, strongly influenced by age: 
 

• Before the age of 60: one-off withdrawals of heterogeneous sizes, most often massive 
(>200% of the annual guaranteed withdrawal) illustrative of the consumption of expensive 
durable goods, real estate purchases, financing education and vocational trainings, 
children's studies, management of periods of unemployment 
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• From 60- to 70-year-old:  regular withdrawals, of moderate and homogeneous sizes during 

retirement, illustrative of the entry into annuity. 
 
• Post 70-year-old: mostly the entry into annuity with regular moderate and homogeneous 

withdrawals; but also excess withdrawals (for tax reasons or donation). 

Figure 4 
Withdrawals patterns 

 
 
 
 

 
 

Source LIMRA (USA) 
 

This segmentation of customer profiles reflects a strong differentiation of savings behaviours, which 
calls for an optimization of the product design tailored to its uses for an enriched Customer Experience. 

3 Explicit modelling of efficient savings behaviour enhances Customer 
Experience by better meeting customers’ expectations 

3.1. Explicit modelling of efficient savings behaviour 

3.1.1. Formulation and basic notations 

We consider an x-year old policyholder possessing a savings and retirement contract. At inception, an 
initial endowment is invested in a risky asset 𝑆𝑆𝑡𝑡. The specifications of the contract include a set of dates 
0 = 𝑡𝑡0 < 𝑡𝑡1 < 𝑡𝑡𝑛𝑛 < 𝑡𝑡𝑁𝑁 = 𝑇𝑇, where 𝑡𝑡0 = 0 is the contact inception and 𝑡𝑡𝑁𝑁 = 𝑇𝑇 its maturity. These so-called 
contract anniversaries are the dates in which events can take place, i.e. withdrawals, payments, etc... 
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An analysis of the design of general equity-indexed annuities from the investor’s perspective and a 
generalization of the conventional design is proposed in Boyle and Tian (2008) [2]. 

3.1.1.1. The contract assumptions 

The financial market 

The pricing is based on the common pricing literature which assumes the existence of a risk neutral 
measure ℚ under which future cash flows can be valued as their expected discounted values. The 
existence of such measure implies an arbitrage free financial market. 

We assume that the risky asset 𝑆𝑆𝑡𝑡, which serves as an underlying mutual fund for the variable annuity, 
follows a Geometric Brownian motion with constant coefficients under ℚ: 

𝑑𝑑St
St

= rSt𝑑𝑑𝑑𝑑+𝜎𝜎𝑡𝑡dWt 

where 𝜎𝜎 is the volatility or the risky asset, 𝑟𝑟 the risk-free rate and 𝑊𝑊a standard Brownian motion under 
ℚ. The money market evolves with risk-free interest rate, and the numeraire process 𝐵𝐵𝐵𝐵 is given by: 

𝑑𝑑𝑑𝑑𝑡𝑡 = 𝑟𝑟𝑟𝑟𝑡𝑡𝑑𝑑𝑑𝑑 

Under the risk neutral probability measure, the discounted asset process 𝐵𝐵𝑡𝑡 −1 𝑆𝑆𝑆𝑆 is a martingale. 

The mortality assumption 

It is common practice among insurers to use deterministic mortality rate to evaluate and replicate their 
policy pool. We also make the common assumption that financial markets and biometric events are 
independent.  

Let us introduce the mortality notations as:  

• 𝑥𝑥0 : the policyholder’s age at the contract inception;  
• 𝑞𝑞𝑛𝑛: the probability that the policyholder, aged 𝑥𝑥0 at inception, dies between time 𝑡𝑡𝑛𝑛-1 and 𝑡𝑡𝑛𝑛;  
• 𝑝𝑝𝑛𝑛 : the probability that the policyholder, aged 𝑥𝑥0 at inception, is alive at time 𝑡𝑡𝑛𝑛;  
• 𝜔𝜔: the limiting age beyond which survival is impossible. According to the definition, we have 

𝑝𝑝𝑛𝑛 = (1 − 𝑞𝑞𝑛𝑛)𝑝𝑝𝑛𝑛-1, where 𝑛𝑛 ∈ {1,2, . . . , 𝑁𝑁}.  

From the insurer’s perspective, the percentage of active contracts in a large policy pool of policyholders 
aged 𝑥𝑥 = 𝑥𝑥0 + 𝑡𝑡𝑛𝑛 at a given time 𝑡𝑡𝑛𝑛 is thus given by 𝑝𝑝𝑛𝑛 

3.1.1.2. The contract state variables 

At a given anniversary date 𝑡𝑡𝑛𝑛, the value of the contract, purchased by an 𝑥𝑥0 year old policyholder at 
inception, is determined by three main state variables: the account value, the benefit base, and the  
two-states variable determining if he is alive or dead at time 𝑡𝑡𝑛𝑛. 

• Account value 𝐴𝐴𝑡𝑡: the value of the investment account, which is indexed on the asset value 𝑆𝑆𝑡𝑡, 
and reduced by withdrawals and fees.  
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• Benefit base 𝐺𝐺𝑡𝑡: also referred as the guaranteed account, is an “imaginary” wealth upon which 
annuities, guaranteed withdrawals and benefits are calculated. However, if the insured wants 
to lapse the contract, he will not be able to get this wealth.  
 

• Death process 𝐼𝐼𝑛𝑛: a two˗states variable in {0,1} informing if the policyholder died during (𝑡𝑡𝑛𝑛-1 , 
𝑡𝑡𝑛𝑛], or is still alive at 𝑡𝑡𝑛𝑛. The death probability in the interval (𝑡𝑡𝑛𝑛-1, 𝑡𝑡𝑛𝑛] is given by 𝑞𝑞𝑛𝑛 = ℙ(𝐼𝐼𝑛𝑛 = 0 ∣ 
𝐼𝐼𝑛𝑛-1 = 1), which depends on the policyholder’s age at inception. 

We restrict our analysis to single premium contracts 𝐴𝐴0 = 𝐺𝐺0, i.e., one premium at inception with no 
additional contributions. The policyholder can either withdraw money or exercise the income benefit. 
Withdrawals include “zero” withdrawals and completely surrender the contract, i.e. lapse. 

3.1.1.3. The income and death benefits 

At maturity, the holder of the contract can select to take a lump sum of the account value 𝐴𝐴𝑡𝑡𝑛𝑛, or 
annuitize the benefit base at pre-specified guaranteed annuitization rate. Annuity factors, which give 
the annuitization rates, denoted by ätN𝑎𝑎𝑎𝑎𝑎𝑎 for the actual and ätN

𝑔𝑔𝑔𝑔𝑔𝑔for the guaranteed, are defined as the 
price of an annuity paying one dollar each year with either at the market’s rates curve, or an internal 
guaranteed rates defined by the insurer. The calculations of the annuity factors take into account the 
probability that the insurer is alive in the future with probability p. They are given by: 

 

These factors are increasing, since an older insurer will likely have less annuities than a younger one. 
Therefore, annuitizing the account value is equivalent to a lump sum, and annuitizing a benefit base 𝐺𝐺 
is equivalent to the amount I𝑡𝑡𝑛𝑛 equal to 

 

If the contract also contains a death guarantee, then the D amount is paid to the beneficiaries in the 
event of the death of the insured during the term of the contract and the cash flow ends. With 
δ=(δ1, δ2, … , δ𝑁𝑁) the death indicator variable and the probability of death 𝑞𝑞𝑛𝑛 = 𝑃𝑃( δ𝑛𝑛 = 1) = (1 −
𝑝𝑝𝑛𝑛). 

Cash flows are recognized at discrete annual interim dates 𝑡𝑡𝑛𝑛 between the signing and expiry of the 
contract: 0 = 𝑡𝑡0<𝑡𝑡1 < ⋯ < 𝑡𝑡𝑛𝑛 < ⋯ < 𝑡𝑡𝑁𝑁 = 𝑇𝑇. 

For the sake of simplicity, we assume that the policyholder can take withdrawals each policy 
anniversary 𝑡𝑡𝑛𝑛 and denote by 𝛾𝛾𝑛𝑛 the withdrawals amount. The income benefit also starts at anniversary 
dates, and, in case of a death benefit, the latter is paid out at these dates as well. Thus, the state 
variables described above may have discontinuities at times 𝑡𝑡1, . . . 𝑡𝑡𝑛𝑛. Therefore, for a state variable 
𝑌𝑌, we distinguish between its value “𝑌𝑌𝑌𝑌𝑛𝑛–“ before and “𝑌𝑌𝑌𝑌𝑛𝑛+” after events take place at the anniversary 
date. 
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3.1.2. Contract state variables dynamics  

Development between two policy years (𝑡𝑡𝑛𝑛-1, 𝑡𝑡𝑛𝑛] 

Assuming that an annual guarantee fee 𝛼𝛼 is continuously charged by the issuer, the value of the 
account value 𝐴𝐴𝑡𝑡𝑡𝑡 evolves as: 

 

where 𝛥𝛥𝛥𝛥 = 𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛-1  

In practice, the guaranteed fee is charged discretely and proportional to the account value that can 
easily be incorporated into the wealth process. Denoting the discretely charged fee with the annual 
basis as 𝛼̄𝛼, the wealth process becomes: 

 

The guarantee offered by the contract is denoted G, increasing at a guaranteed annual rate η during 
the waiting period, and serving as the basis for converting the contract into a life annuity I, associated 
with pre-defined annuity factors at the signing of the contract. 

𝐺𝐺t+1 = (1 + η)𝐺𝐺t 

The benefit base remains constant between two policy years, i.e: 

 

Transition at a policy year 𝑡𝑡𝑛𝑛 

The contract events take place at the discrete policy years.  

On each date 𝑡𝑡𝑖𝑖 the future cash flow 𝑓𝑓𝑛𝑛 can therefore take 3 forms: 

• with probability 𝑞𝑞𝑛𝑛 = (1 − 𝑝𝑝𝑛𝑛):  death insurance amount D𝑛𝑛 
 

• with probability 𝑝𝑝𝑛𝑛 : withdrawal γ𝑛𝑛 ∈ �0;𝐴𝐴𝑡𝑡𝑛𝑛� (which reduce 𝐴𝐴𝑡𝑡𝑛𝑛 and the guarantee 𝐺𝐺𝑡𝑡𝑛𝑛, in an 
equal or even way); or exercise the income benefit I𝑡𝑡𝑛𝑛: 

𝑓𝑓𝑛𝑛�𝑡𝑡𝑛𝑛 ,𝐴𝐴𝑡𝑡𝑛𝑛 , I𝑡𝑡𝑛𝑛 , D𝑡𝑡𝑛𝑛� = �
∗  D𝑛𝑛 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (1 − 𝑝𝑝𝑛𝑛) 

∗ 𝑀𝑀𝑀𝑀𝑀𝑀(γ𝑛𝑛 ∈ �0;𝐴𝐴𝑡𝑡𝑁𝑁�; I𝑛𝑛 ) 
𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑛𝑛 

 

 

3.1.3. Contract valuation 

Traditionally the customers’ behaviour has been modelled by historical or backward-looking statistical 
regressions which have empirically been not enough to anticipate dynamically extrapolate the 
observed shifts in behaviour and meet the customers risk appetites. In contrast, an “efficient” 
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behaviour strategy valuation is a prudent forward-looking approach where policyholders behave in a 
way that maximizes the net present value of the future cash-flows, depending on key drivers such as 
market conditions and product design features. See B. Bouchard, A. Kalife, S. Mouti, X. Tan, and L. 
Wang (2015) [1] and A. Kalife, S. Mouti, G. López Ruiz, X. Tan (2018) [6]. 

The stochastic control problem 

The customer experience is measured by the value of the retirement savings contract, i.e. the average 
consumption of accumulated savings discounted, is therefore the average of the sum of the future 
cash flows 𝑓𝑓𝑛𝑛 discounted over the life of the retirement savings contract: 

V(𝑡𝑡0 ,𝐴𝐴0, I0) = 𝔼𝔼𝑡𝑡0 
ℚ 𝔼𝔼𝑡𝑡0 

𝛿𝛿 �� 𝑒𝑒−𝑟𝑟𝑡𝑡𝑛𝑛
𝑁𝑁

𝑛𝑛=1

𝑓𝑓𝑛𝑛� 

Where 𝔼𝔼𝑡𝑡0 
ℚ 𝔼𝔼𝑡𝑡0 

𝛿𝛿 denotes the expectation is conditional on information available at time 𝑡𝑡0, i.e with 
respect to both the financial risky asset process under ℚ, and the mortality process under the real 
probability measure 𝛿𝛿. 

Noting  𝑓𝑓= (𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑁𝑁) the savings strategy, it is considered that the empirical profiles correspond to 
an optimal strategy that maximizes customer satisfaction: 

𝑓𝑓∗ = argsup𝑓𝑓V(𝑡𝑡0 ,𝐴𝐴0, I0) 

This falls within the framework of standard optimal stochastic control problems for a controlled 
Markov process, whose numerical resolution is carried out in a retrograde manner starting from the 
terminal condition of date N. Finding the contract value 𝑉𝑉(𝑡𝑡𝑛𝑛 , 𝐴𝐴𝑛𝑛, I𝑛𝑛) at time 𝑡𝑡𝑛𝑛  is done via a backward 
Bellman equation.  

Since the account value 𝐴𝐴 evolves between two anniversary dates, whereas the benefit base is a 
constant piecewise function (i.e. changes at anniversary dates only), the value is driven by a PDE with 
jump conditions at each withdrawing date to link the prices at the adjacent periods: the required 
backward recursion is thus written between 𝑡𝑡𝑛𝑛+1− and 𝑡𝑡𝑛𝑛+ as: 

 

With jump condition: 

 

Numerical scheme  

The algorithm starts from a final condition for the contract value at 𝑡𝑡𝑁𝑁−. Subsequently, solving the PDE 
gives solution for the contract value at 𝑡𝑡𝑛𝑛−1+ .  
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The PDE used to calculate the expected value under the assumed risk-neutral process for the risky 
asset 𝑆𝑆𝑆𝑆 is easily derived using Feynman-Kac theorem.  

When the risky asset follows a geometric Brownian motion process, the governing PDE right after a 
withdrawal decision 𝑡𝑡𝑛𝑛+  to right before the following one 𝑡𝑡𝑛𝑛+1−  for 𝑛𝑛 = 𝑁𝑁 − 1, 𝑁𝑁 − 2, . . . ,0 is expressed 
as the follows 

 

to which we add boundary conditions defined in the next section. It is is solved using the Crank-
Nicolson finite differences methods. See (Dai, Kuen Kwok, and Zong (2008) [3], Huang, Forsyth, and 
Labahn (2012) [5]. 

Note again that the benefit base changes only at the anniversary dates and is a constant parameter 
between two anniversary dates. Applying the jump condition to the solution at 𝑡𝑡𝑁𝑁−1+  , we obtain the 
solution at 𝑡𝑡𝑁𝑁−1−  from which further backward time stepping gives us solution at 𝑡𝑡𝑛𝑛−2+ , and so on. The 
numerical algorithm takes the following key steps: 

1. Generate a finite grid for the account value A and benefit base G, i.e. A0 < A1 < ... < AJ and 0 
= G0 < G1 < ... < GK.  

2. At 𝑡𝑡𝑁𝑁, define the final condition for each note point (Aj, GK), j = 1, 2,..., J and k = 1, 2,...,K to 
get Φ (𝑡𝑡𝑛𝑛− ,A,G) and the boundary conditions for Amin and Amax for each potential Gk∈{1,2,...,K}.  

3. For each potential benefit Gk, k = 1, 2,...,K, solve the PDE using the Crank-Nicolson finite 
differences scheme to obtain Φ(𝑡𝑡𝑁𝑁−1+ , A,G).  

4. Apply the jump condition to obtain Φ (𝑡𝑡𝑁𝑁−1− ) for all the values of γN−1 and find the withdrawal 
amount γ𝑁𝑁−1∗  that minimizes Φ(𝑡𝑡𝑁𝑁−1− ,A,G). In general, this involves a two-dimensional 
interpolation in (A,G).  

5. Repeat (3) and (4) for t = tN−2,t N−3,...,t1.  

6. Evaluate the PDE for the backward time step t1 to t0 to obtain solution Φ(t0, A,G) at A0 and 
G0 

Localization and boundary conditions 

Within each time interval (tn−1, tn), only the account value varies since all the benefit bases, death and 
life, remain constant. Thus, for t ∈ (𝑡𝑡𝑛𝑛∓, 𝑡𝑡𝑛𝑛+1− ], the annuity value Φ(t, A,G) solves the following linear 
PDE for each fixed value of the benefit base G 

 

 

This equation is originally posed on the domain (t, A) ∈ [0,T] × [0,∞). For computational purposes, and 
because asset prices are finite and so is the account value, one needs to localize this domain to [0,T]×[0, 
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Amax] where Amax is large enough not to be attained by the account value during the lifetime of the 
annuity. Thus, we need to add complementary boundary conditions. We consider that we are between 
two anniversary dates 𝑡𝑡𝑛𝑛∓and 𝑡𝑡𝑛𝑛+1−  backwards. 

• When A = 0, the policyholder has no longer the possibility to make any withdrawal from his 
account. However, if the IB election is possible, then the income period begins, given the 
policyholder is alive, and the death benefit is activated if he is dead at tn+1. Since the account 
value is equal to zero, then the annuitization will be indexed on the benefit base. Therefore, 
we have : 

 

• When A = Amax, we consider retrieving all the cash more interesting than any other strategy if 
the policyholder is alive. If he dies, the death benefit will be activated. Therefore, the Dirichlet 
boundary condition for this case is 

 

Let us define the solution domains 

 

Construction of the scheme 

Let (A0, A1,..., AJ) be the equally spaced grid in the direction of the account value with A0 = 0 and AJ = 
Amax. Analogously (G0,...,GK) is an equally spaced grid for the benefit base with G0 = 0 and GK = Gmax = 
Amax. The spacial steps for both variables are considered to be equal. That is : 

  

Hence, Aj = j∆A and Gk = k∆G, ∀j,k. The discrete time steps are denoted by n∆t for n = 1,...,N where T = 
N∆t. Since, in our analysis, we consider that events occur only at anniversary dates which are yearly, 
∆t = 1 and each time tn coincides with the discrete time step tn = n. 

The numerical procedure to solve the approximation is the standard finite difference approach, using 
the general theta-scheme (the Crank-Nicolson scheme). We employ the two-level implicit finite 
difference scheme to discretize. 

Recall that changes in the benefit base only occur at withdrawal dates. After withdrawing the amount 
γn at time tn, the account value changes from A𝑡𝑡𝑛𝑛− to A𝑡𝑡𝑛𝑛+, and the benefit base drops from G𝑡𝑡𝑛𝑛− to G𝑡𝑡𝑛𝑛+. 

The application of the jump condition decreases the account value and benefit base. For each Gj, a 
continuous solution from the PDE is associated. We can restrict the possible values for the withdrawal 
amount to multiples of ∆A. This implies, for a given account value Aj at time 𝑡𝑡𝑛𝑛−, the withdrawal amount 
γ takes j possible values: γ = Aj – Ai , i = 1, 2,..., j. However, numerical tests showed that a finer grid is 
preferable for the withdrawal amount. Therefore, it is not guaranteed that the account value, nor the 
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benefit base after the withdrawal, A𝑡𝑡𝑛𝑛− and G𝑡𝑡𝑛𝑛+, fall within their respective grid nodes. To solve this 
issue, a two-dimensional interpolation is required.  

 

3.2. Enhancing Customer Experience through product features that meet customer 
expectations 

The introduction of certain product features leads to savings consumption behaviours in line with the 
observed patterns, for an enhanced Customer Experience. 

Behaviours take the form of (i) withdrawals 𝛾𝛾∗
𝐺𝐺

> 0 (expressed as % of guarantee G) or (ii) activation of 

the life annuity (𝛾𝛾∗
𝐺𝐺

= −1) in the chart below, depending on the past duration t and the ratio "A/G" 

(investment account A divided by guarantee G). 

1/ The choice of less risky S investment assets (illustrated by a lower volatility - 10% vs. 30% in the 
chart) is in favour of earlier withdrawals, thus moving the behavior towards the empirical pattern 
observed for those below 60 years. 

Figure 5 
Impact of Asset Volatility 

 

                       𝛾𝛾∗
𝐺𝐺

                             𝛾𝛾∗
𝐺𝐺

                          

 
 
 
 
 

 

2/ The introduction of a dynamic roll-up rate η for the guarantee G (i.e. decreasing as interest rates 
fall) on the one hand reduces the disparity in withdrawal sizes, on the other hand promotes a more 
frequent activation of the life annuity, thus moving the behaviour towards the empirical pattern of 
retirees aged from 60 to 70 years. 

Figure 6 
Impact of a variable roll-up guarantee rate 

 
                              𝛾𝛾∗

𝐺𝐺
                                       𝛾𝛾∗

𝐺𝐺
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3/ The introduction of a death guarantee on the one hand promotes the smaller size of withdrawals, 
on the other hand postpone the withdrawals and the activation of the life annuity, thus moving the 
behaviour towards the empirical pattern of retirees over 70 years. 

Figure 7 
Impact of a death guarantee 

 
                                𝛾𝛾∗

𝐺𝐺
                                         𝛾𝛾∗

𝐺𝐺
                          

 
 
 
 
 

 

Savings behaviours depend as expected on the economic environment: a low investment account 
and/or a high guarantee provide an incentive to reduce the frequency and size of withdrawals, and to 
activate the life annuity earlier. 

Similarly, the effectiveness of product design changes is influenced by the economic environment: 
withdrawals increase in frequency and size with interest rates and the level of investment assets. 

Figure 8 
Impact of a death guarantee 

 
                                𝛾𝛾∗

𝐺𝐺
                                         𝛾𝛾∗

𝐺𝐺
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Conclusion 

Longer life expectancy, increasing lifestyle and health care costs, and the persistence of low interest 
rates have contributed to the emergence of increasingly differentiated savings behaviour patterns. 

The explicit quantitative modelling of efficient savings behaviour makes it possible to select the 
product features that meet customers ‘needs and expectations, in line with their empirical savings 
behaviour patterns, for an enhanced Customer Experience. 
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