(Deep) Machine Learning Algorithms
Bias & Explainability Challenges for Regulation

J.-M. Loubes, Professor
&
L. Risser, AI Research Engineer
Chair : C. Benesse, L de Lara, A. Gonzalez, B. Laurent, M. Serrurier
UPS, CNRS & Chair @ Artificial & Natural Intelligence Institute of Toulouse (ANITI)
Part 1: Principles and Dangers of Machine Learning
Mathematical Guarantees in Machine Learning

Goal
• Learning the relationships between characteristic variables X and a target variable Y.
• Being then be able to forecast new observations.

Learning Sample
I.i.d. observations with unknown distribution \mathbb{P}: $(Y_1, X_1), \ldots, (Y_n, X_n)$.

Machine Learning Algorithm \hat{f}_n for a given risk $R(f) = \ell(y, f(x))$
Train the best model among a class of algorithms \mathcal{F}, based on the observations:

$$\hat{f}_n \in \arg \min_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(X_i)) \right\}$$

Unknown oracle rule. $f^* \in \arg \min_{f \in \mathcal{F}} \mathbb{E}_{\mathbb{P}} \{ \ell(Y, f(X)) \}$

\rightarrow Mathematical guarantees on $\hat{Y} = \hat{f}_n(X)$: Control of generalization error

$$\mathbb{E}_{\mathbb{P}} \{ \ell(Y, \hat{f}_n(X)) \} - \mathbb{E}_{\mathbb{P}} \{ \ell(Y, f^*(X)) \} \leq \varepsilon$$
Big Data paradigm
• The Data convey all the information.
• The more the data the more accurate the description of the reality.

→ From data to information: extraction of the knowledge from empirical observations

Need for Large amount of data of good quality

Principle of Machine Learning
• Learn decision rules fitting the data using a set of labeled examples (learning sample).
• The learned decision rules will be used for all the population.
• The whole population is supposed to follow same distribution as the learning sample.

→ The Machine Learning algorithm (or AI) learn the best rule from the data and then can forecast new observations with a guaranteed precision.

Need for Complex Models
Applications of Machine Learning Algorithms

Development of such algorithms for a **large number of applications in all fields of our lives** even critical ones (health, finance, justice, education, transports, resources management …)

Classified **High Risk Use Cases** by European Community AI Act

- **Credit Scoring**
- **Personalised Medicine**
- **Autonomous Vehicles**
- **Pattern Detection**
- **Time series Forecasting**
Need for Regulations and Law: first principles

Amazon, Facebook, Google, IBM, Microsoft... (2015)
Bruxelles, le 21.4.2021
COM(2021) 206 final
2021/0106 (COD)

Proposition de

RÈGLEMENT DU PARLEMENT EUROPÉEN ET DU CONSEIL

ÉTABLISSANT DES RÈGLES HARMONISÉES CONCERNANT L’INTELLIGENCE ARTIFICIELLE (LÉGISLATION SUR L’INTELLIGENCE ARTIFICIELLE) ET MODIFIANT CERTAINS ACTES LÉGISLATIFS DE L’UNION

{SEC(2021) 167 final} - {SWD(2021) 84 final} - {SWD(2021) 85 final}
Artificial Intelligence Act (**April 2021**) by European Commission

- Definition of **High Risk domains** of applications (health, finance, public services, transports …)
- Performance matters but not only: notions of **equity, transparency** and robustness
- Need for **definitions of norms** to measure bias (AFNOR, IEEE, …)
- Need for **explainable & understandable** decisions
- **Primum non nocere**

Works in progress to Certify AI based systems (for cars, airplanes …)
Part 2: Bias in Machine Learning
General Data Protection Regulation (GDPR) & European AI Act (2021)

- Effective in the E.U. since 05/2018
- According to the GDPR, automatic decisions taken by an algorithm should be:
 - *un-biased*
 - *not discriminant*
 - *fair*
 - *with the same performance as regards the persons or the groups of persons*

More generally

- E.U. (GDPR, art 22-4 2018): "A decision is declared fair if it is neither based on affiliation to a protected minority group, nor based on the explicit or implicit knowledge of sensitive personal data."
- NYC Bill (Dec. 2017) : local decision
- Several Trials (USA-Canada)
- …
Bias leads to unfairness and **personal or group** discrimination.

- August 2018 Accuracy on Facial Analysis Pilot Parliaments Benchmark:
 - 98.7% for DARKER MALES
 - 68.6% for DARKER FEMALES
 - 100% for LIGHTER MALES
 - 92.9% for LIGHTER FEMALES

- Amazon Rekognition Performance on Gender Classification:
 - Skyscrapers
 - Airplanes
 - Cars
 - Bikes
 - Gorillas
 - Graduation

- COMPAS recidivism black bias:
 - DYLAN FUGETT: Prior Offense 1 attempted burglary, Subsequent Offenses 9 drug possessions, Risk 3
 - BERNARD PARKER: Prior Offense 1 resisting arrest without violence, Subsequent Offenses None, Risk 10

- Equality of Odds

- Statistical Parity
Data & Machine Learning are subjected to bias

- ML Algorithms amplify pre-existing bias
- or maintain a biased status-quo
- Auto-prophetic algorithm shape biased worlds
- Accuracy is not enough
An A.I. algorithm suffers from **unfairness** if its outcomes Y (decisions) are fully or partly based on a **sensitive variable** A that *should* not play a decisive role in the decision making process.

Statistical Parity : $\hat{Y} \perp A$

Equality of Performance : $\hat{Y} \perp A \mid Y$

Being **globally fair** is a probabilistic notion of dependency or conditional dependency.

Measures of fairness are numerous and correspond to measuring joint effects which are complex in high dimensions since « **Biases are everywhere** ».

1. **Disparate Treatment** for all x,

 $\mathbb{P}(\hat{Y} = 1 \mid X = x, A = 0) - \mathbb{P}(\hat{Y} = 1 \mid X = x, A = 1)$

2. **Avoiding Disparate Treatment** :

 $\mathbb{P}(\hat{Y} \neq Y \mid A = 0) - \mathbb{P}(\hat{Y} \neq Y \mid A = 1)$

3. **Predictive Parity**

 $\mathbb{P}(Y = 1 \mid \hat{Y} = 1, A = 0) - \mathbb{P}(Y = 1 \mid \hat{Y} = 1, A = 1)$

4. **For Quantitative case**

 $\min \text{Var}_A \mathbb{E}(\hat{Y} \mid A) \quad \min \text{Var}_A \mathbb{E}(\ell(\hat{Y}, Y) \mid A)$
Granting a Loan by minimising Risk « Adult Data set (UCI database) »

$\text{n} = 48842$ observations (individuals) described by $p = 14$ variables

Objective: Forecast if a credit can be given (future salary > 50k$)

Problem: Not balanced w.r.t to variable « A = Sex »
Illustration on the *Adult Income* dataset — Disparate impact and accuracy

Disparate Impact w.r.t variable *Sex* considered as sensitive variable A

\[
Ref = DI(Y, X, A) = \frac{\mathbb{P}(Y = 1 \mid A = 0)}{\mathbb{P}(Y = 1 \mid A = 1)}
\]

\[
DI(f, X, A) = \frac{\mathbb{P}(f(X) = 1 \mid A = 0)}{\mathbb{P}(f(X) = 1 \mid A = 1)}
\]

- Statistical increase of discrimination between A=1 (Men) et A=0 (Women)
- « Gender » variable leads to discrimination
What says the law? High quality data without discriminative variables.

GDPR or AI’s Act focus on quality of the dataset
Sensitive variables should not be used: \(A=\text{Sex is removed from the learning sample}\)

Disparate Impacts

Accuracies

Bias is not modified → comes from **correlations** and not only the \(A\) variable
L'apprentissage automatique semble renforcer les biais existants dans la société.

A Survey of Bias in Machine Learning Through the Prism of Statistical Parity

Philippe Besse, Eustasio del Barrio, Paula Gordaliza, Jean-Michel Loubes & Laurent Risser

Received 01 Apr 2020, Accepted 02 Jul 2021, Accepted author version posted online: 13 Jul 2021, Published online: 25 Aug 2021
Choose a definition for fairness (mainly based on conditional independence) & pay a price for fairness

Three main ways of obtaining fairness according to the criterion which is chosen

1. **Pre-processing** the learning sample and removing the effect of the sensitive variable such that the algorithm does not take into account the effect of the variable that creates the biased behaviour.

 \[X \leftrightarrow \tilde{X} \leftrightarrow f(\tilde{X}) \]

2. **Constraining the algorithm** by adding a fairness constraint

 \[\hat{f} \in \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(X_i)) + \lambda I(f) \]

3. **Post-processing** the outcome of the algorithm to comply the fairness restrictions.

 \[f(X) \mapsto \Phi_{\text{fair}}(f(X)) \]

\[
W_c(\mu_0, \mu_1) = \inf_{\Pi \in \mathcal{P}(\mu_0, \mu_1)} \int c(x, y) d\Pi(x, y)
\]
Fairness constraint for Deep Neural Network

Back-propagation of Fairness constraints in Neural Networks:

\[
\hat{\theta} = \arg \min_{\theta} R(\theta) + \lambda W^2_2(\mu_{\theta,0}^n, \mu_{\theta,1}^n)
\]

Optimal Transport distance (Wasserstein distance) to enforce both distributions to be the same

Risk

Fairness Constraint

Loubes et al. (ICML 2019)
Bias and Robustness w.r.t change of context

EuroSAT dataset (https://madm.dfki.de/downloads) : 27,000 remote sensing images / 10 classes

Blue shade effect ($\approx 3\%$)

Automatic Classification between Roads and Rivers is hampered by « Blue shade » variable
Examples of Applications in Econometry

• Gender Effect in microfinance

• Finding Instruments in Instrumental Variable Regression without using some variables (protected variables)

• Constraining the IV regression to be independent from a sensitive attribute
Part 3: 3.1 Explainability in Machine Learning
Explanability techniques in M.L.

Need for explainability

Emergence of a *Right to explanation*

- E.U. (RGPD, art 22 — 2018) : « Right not to be subject to a decision solely based on automated processing, including profiling »
- Fr (Loi Informatique et Libertés) : « Right to understand the rules of automatic treatments and their main characteristics »
- NYC Bill (Dec. 2017) : Local laws related to automatic decision systems
- E.U (AI Act - 2021) : « Necessity to be able to correctly interpret and understand the high-risk AI system’s output » (Art 13) « sufficiently transparent to enable users to interpret the system’s output and use it appropriately. »

Exemples of recent works

- Besse, Castet-Renard, Garivier, Loubes : L’I.A. du quotidien peut-elle être éthique? Statistique et société 6(3), 2018 — https://www.youtube.com/watch?v=RwsMy0ILXos
- Packages Grad-Cam, Lime, GEMS-AI
- …
1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model → convolutional neural network:

class basicCNN(nn.Module):
 def __init__(self):
 super(basicCNN, self).__init__()
 #Convolution/ReLU/MaxPooling layers
 self.conv1 = nn.Conv2d(1, 2, kernel_size=2, stride=1, padding=1) #1 to
 self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) #32x32 to 16x16
 self.conv2 = nn.Conv2d(2, 4, kernel_size=2, stride=1, padding=1) #2 to
 self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) #16x16 to 8x8
 self.conv3 = nn.Conv2d(4, 8, kernel_size=2, stride=1, padding=1) #4 to
 self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) #8x8 to 4x4

 #Dense layers
 self.fc1 = nn.Linear(8 * 4 * 4, 32)
 self.fc2 = nn.Linear(32, 10)

 def forward(self, x):
 x = F.relu(self.conv1(x))
 x = self.pool1(x)
 x = F.relu(self.conv2(x))
 x = self.pool2(x)
 x = F.relu(self.conv3(x))
 x = self.pool3(x)
 x = x.view(-1, 8*4*4) #flatten the data
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 return(x)

Mnist: predicting Digits

https://github.com/gwding/draw_convnet
Need for explainability to trust the model

Strong interest to certify algorithmic decisions → robust decision making + towards certifiable IA

Example:

Suppose that the predictions are generally accurate:
- Which features were used to take the decision?
- If inadequate features were used, the NN is likely to generalise poorly!
Part 3: 3.2 Explainability in Machine Learning

Solutions & Research
Surrogate Models → LIME (Local interpretable model-agnostic explanations)

“Why Should I Trust You?”
Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro
University of Washington, USA
marcotcr@cs.washington.edu

Sameer Singh
University of Washington,
Seattle, WA 98195, USA
sameer@cs.washington.edu

Carlos Guestrin
University of Washington,
Seattle, WA 98195, USA
guestrin@cs.washington.edu

https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://github.com/marcotcr/lime

Training a **local surrogate models** to explain the prediction of X_i with f_θ

Drawbacks: NN are highly non linear and local models can be very different

Our neural-network prediction model f_θ …

\[f_\theta(X_i) = (0.97, 0.02, \ldots, 0.07) \]

… can become a linear, and straightforwardly interpretable, model g_θ for images close to X_i:

Chosen model can be linear regression or decision tree (interpretable models)

Weighted sum of the intensities with weights:

\[g_\theta(X_i) = (0.95, 0.03, \ldots, 0.05) \]

(followed by logistic function)
Instead of back-propagating the derivatives of the risk \(R \), it is possible to back-propagate the derivatives of a specific value in the N.N. outputs.

Sensitivity to the input → Grad-CAM

Represented how \(y^c \) is sensitive to the N.N. inputs (for the tested image)

Guided Backpropagation

Slightly modified back-propagation

[Springenberg et al. 2014]

http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam/
3) Three explainability solutions → Grad-CAM

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

Ramprasaath R. Selvaraju · Michael Cogswell · Abhishek Das · Ramakrishna Vedantam · Devi Parikh · Dhruv Batra
Georgia Institute of Technology, Atlanta, GA, USA
Facebook AI Research, Menlo Park, CA, USA

Results

<table>
<thead>
<tr>
<th>Predicted class</th>
<th>#1 boxer</th>
<th>#2 bull mastiff</th>
<th>#3 tiger cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad-CAM [1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided backpropagation [2]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided Grad-CAM [1]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sensitivity Analysis for AI Algorithms. used to certify computer code

(Used in nuclear safety for instance)

Quantification of the dependency of an output w.r.t changes of input parameters

Sobol indices or Shapley values methods …. (Also to quantify the variability of a bias criterion and understand the root of the bias) Fairness seen as Global Sensitivity Analysis work by Benesse et al. https://arxiv.org/abs/2103.04613

Sobol indices when Prediction Myocardial Infarction
3) Three explainability solutions → Gems-AI : explanation under stress

Explaining Machine Learning Models using Entropic Variable Projection
François Bachoc¹, Fabrice Gamboa¹,², Max Halford², Jean-Michel Loubes¹,³ and Laurent Risser¹,³

1Institut de Mathématiques de Toulouse
2 Institut de recherche en informatique de Toulouse
3 Artificial and Natural Intelligence Toulouse Institute (3IA ANITI)

https://www.gems-ai.com/
https://github.com/XAI-ANITI/ethik

« What-if machine » for group-explainability : Explaining models under stress

Intuition : Re-weighting the observations \(\{X_i, Y_i\}_{i=1,\ldots,n} \) to stress the distributions of the data transform a specific property of the test set in average.

Test set
\[
\{X_i, Y_i\}_{i=1,\ldots,n}
\]

\[
P_n = \frac{1}{n} \sum_{i=1}^{n} \delta(X_i, Y_i)
\]

« Black-box » decision rules

\[
\begin{align*}
X_i^1 & \quad \rightarrow \\
X_i^2 & \quad \rightarrow \\
X_i^3 & \quad \rightarrow \\
& \quad \ldots \\
X_i^p & \quad \rightarrow \\
\end{align*}
\]

\[\hat{Y}_i := f(X_i)\]

Modify Input Distribution under constraint:

\[
\arg \min_{Q} \left\{ KL(Q \mid P_n), \text{s.t. } \int \Phi(X, Y) dQ = \lambda \right\}
\]
Theorem 2.1. Let \(t \in \mathbb{R}^k \) and \(\Phi : \mathbb{R}^{p+2} \to \mathbb{R}^k \) be measurable. Assume that \(t \) can be written as a convex combination of \(\Phi(X_1, \hat{Y}_1, Y_1), \ldots, \Phi(X_n, \hat{Y}_n, Y_n) \), with positive weights. Assume also that the empirical covariance matrix \(\mathbb{E}_{Q_n}(\Phi \Phi^\top) - \mathbb{E}_{Q_n}(\Phi)(\Phi)^\top \) is invertible.

Let \(\mathbb{P}_{\Phi, t} \) be the set of all probability measures \(P \) on \(\mathbb{R}^{p+2} \) such that \(\int_{\mathbb{R}^{p+2}} \Phi(x) \, dP(x) = t \). For a vector \(\xi \in \mathbb{R}^k \), let \(Z(\xi) := \frac{1}{n} \sum_{i=1}^n e^{\langle \Phi(X_i, \hat{Y}_i, Y_i), \xi \rangle} \). Define now \(\xi(t) \) as the unique minimizer of the strictly convex function \(H(\xi) := \log Z(\xi) - \langle \xi, t \rangle \). Then,

\[
Q_t := \underset{P \in \mathbb{P}_{\Phi, t}}{\text{arg inf}} \, \text{KL}(P, Q_n)
\]

exists and is unique. Furthermore, we have

\[
Q_t = \frac{1}{n} \sum_{i=1}^n \lambda_i^{(t)} \delta_{X_i, \hat{Y}_i, Y_i},
\]

with, for \(i = 1, \ldots, n \),

\[
\lambda_i^{(t)} = \exp \left(\langle \xi(t), \Phi(X_i, \hat{Y}_i, Y_i) \rangle - \log Z(\xi(t)) \right).
\]

Consistent Estimation:

\[
\mathcal{W}_1(Q_t, Q^*) = O_p \left(n^{-1/(p+2)} \right).
\]
3) Three explainability solutions → Entropic Variable Projection

Explainability techniques in M.L.

Explaining Machine Learning Models using Entropic Variable Projection
François Bachoc¹, Fabrice Gamboa¹,³, Max Halford², Jean-Michel Loubes¹,³ and Laurent Risser¹,³

¹Institut de Mathématiques de Toulouse
² Institut de recherche en informatique de Toulouse
³ Artificial and Natural Intelligence Toulouse Institute (3IA ANITI)

Example: Automatic decision to grant a loan.
What-if the average age is 50 instead of 42 in the test set?

<table>
<thead>
<tr>
<th>Age (X¹)</th>
<th>Education.num (X²)</th>
<th>Marital.status (X³)</th>
<th>Hours.per.week (X⁴)</th>
<th>...</th>
<th>Loan granted — True (Y)</th>
<th>Loan granted — Predicted (ŷ = f_θ(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.05</td>
<td>54</td>
<td>Divorced</td>
<td>40</td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0.83</td>
<td>41</td>
<td>Never-married</td>
<td>60</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1.15</td>
<td>51</td>
<td>Married-civ</td>
<td>40</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>0.81</td>
<td>39</td>
<td>Married-civ</td>
<td>65</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1.15</td>
<td>49</td>
<td>Divorced</td>
<td>50</td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Compute optimal weights

Advantages:
- Small Algorithmic cost in high-dimension
- Evaluate Robustness and Resiliency w.r.t realistic stress conditions
- Explain effects on decision and risks
- Mathematical guarantees on convergence.

Explain how the outputs vary
3) Three explainability solutions → Entropic Variable Projection

Explaining Machine Learning Models using Entropic Variable Projection
François Bachoc¹, Fabrice Gamboa¹, Max Halford², Jean-Michel Loubes¹,³ and Laurent Risser¹,³

¹Institut de Mathématiques de Toulouse
²Institut de recherche en informatique de Toulouse
³Artificial and Natural Intelligence Toulouse Institute (3IA ANITI)

What-if the average […] is […] instead of [original average value] in the test set?

[Graphs showing logistic regression, XGBoost, and Random forest results for different variables like age, education-num, capital-gain, capital-loss, and hours-per-week.]
When Interpretability and Bias collide

The background bias

S the confounding variable is here the **snow** but it is hidden since not encoded in the data base. Need to **unveil the bias with explainability**.
Main Question:

How to certify the behaviour of a Neural Network?

Regulations require a better understanding of Deep Networks:

1. Need for Quantification of Biases in the dataset but also of its propagation by the algorithm
2. Explainability & Transparency of Algorithmic Decisions
3. Need for proper definitions and norms
4. Need for sandboxes, and use-cases

Need to work together between designers of algorithms and regulators
Not complete at all Bibliography ...

- Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil, Fair Regression Wasserstein barycenter, Neurips 2020.

Toolbox : https://www.gems-ai.com/