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1 Introduction 

As the population ages with rapidly changing environment over the past decade, a new reality of long 
term Savings and Retirement has been emerging, as follows: 

• Increased life expectancy 

o Retirees live longer (50% >  92 yrs, 25% > 97 yrs), which needs for a 30+ year plan  

o Need for insurance against longevity risk 

• Changing retirement income sources 

o Reduction in Social Security to meet retirement income needs 

o Increased reliance on Individual Savings Plans 

• Need for return and secure products 

o While 2% inflation over 25 years lead to 40% reduction in purchasing power 

o And 1% greater return  means 10 extra years of income 

o Persistent zero interests bonds vs. equity significant dividends or market growth 

o While increasingly recurrent market crashes 

As a result sustainable long term savings and retirement need markets upside potential, combined 
with downside protection through partial or full capital guarantees post a waiting period. Two major 
types of long term savings and retirement investments are available:  

• The traditional one is the “Euro fund” where the policyholder pays a premium for stable low 
Bonds returns combined with capital guarantee. Unfortunately the persistent close to zero 
bonds yields makes this opportunity neither profitable for the policyholder nor sustainable 
for the insurer due its very high cost of capital within a zero interest rates environment. 

 

• The alternative lies in “Long Term Equity Guaranteed Investments”, where the policyholder 
looks for significant upside exposure (through the Equity investment) and pays a premium to 
ensure downside protection. 

Given the downside protection is subject to financial market downturns, the insurance company may 
suffer a loss in case of financial market turmoil, as illustrated by the following example of a product 
characterized by a partial guaranteed lump sum amount post a waiting period: a policyholder invests 
€100 in a given Equity fund and the insurer guarantees him a minimum of €80 at a 1-year horizon.  
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Figure 1 

Equity Savings & Retirement Guaranteed Product decomposed into an Equity Fund +  Protective 
Equity Put 

 

The payoff for the client is given by the 
blue line (which can be decomposed 
b/w the fund – dotted blue – and a Put 
option – dotted red) 
 

• If the Equity fund terminal value is 
above €100, then the client makes a 
profit 
 

• If the Equity fund terminal value is b/w 
€80 and €100, then the client suffers 
some loss (b/w 0 and €20) 

 
• If the Equity fund terminal value is 

below the guarantee level €80, then the 
loss for the client is capped at €20, 
while the insurer pays the difference 
between the terminal value and €80, 
which can be significant, which is called 
“Put option payoff”. This risk of loss to 
the insurer must be taken into account 
in the insurance premium at contract’s 
inception, as future potential loss 
cannot be passed on to the customer at 
a later date. 

 
From then on, the customer's gain, which 
must be included in the insurance 
premium, is broken down into: action + 
"Put". 

 

In order to mitigate those financial risks borne by the insurer, such a partial downside protection has 
to be “hedged” by the insurer, by investing in “hedge assets” (e.g. Futures, options) whose variations 
with respect to economic variables offset the variation of the downside protection embedded within 
the savings & retirement product – and whose expected cost has to be integrated into the insurance 
premium. As a matter of fact, insurance companies are major users of “hedge” assets to protect the 
value of their large Asset under Management (the Individual Savings business amounts to ~€1,800 bn 
in France, ~$6,000 bn in the US), as illustrated by the significant increase their notionals from $786 
billion as of 2010 to $2,300 billion as of FY 2018, out of which $1.1 trillion are invested in Equity 
hedges).  

As the Long Term Equity Guaranteed Investment can be decomposed into the Equity Asset and a Put 
option, hedging the risks embedded within the downside protection can be done through buying Put 
options available in limited quantity in the financial market. However, buying a large number of Equity 
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Put options may bear pressures on the unit price as Equity Put options are highly sensitive to supply 
and demand balance, which implies a higher cost of hedging than initially expected. 

There indeed have been significant evidence of growing costs stemming from supply-and-demand 
imbalance for options, driven by the hedging activity of large players, in particular during equity selloffs 
with growing likelihood over the past decade (May 2010, August 2011, August 2015, January 2016, 
June 2016, February 2018, October-December 2018, March-April 2020). 

Besides, recent regulatory frameworks (e.g., Solvency II in Europe, NAIC reform and US GAAP LDTI in 
the US) force insurers to hold sufficient capital requirements offsetting the economic (mark-to-market) 
risks embedded within those downside protection guarantees, in order to remain solvent during 
periods of market stress. Those capital requirements can be reduced if the economic risks are 
mitigated through buying put options, whose prices will increase as a result of supply-and-demand 
imbalance. 

As a result, the cost of placing one large order to close a position becomes significantly greater than 
the sum of infinitely small orders differed in time. For this reason, an explicit modeling of the market 
impact function driven by the transaction size is required (which is not considered by traditional pricing 
models). Such market impact function depends on the “temporary impact strength” that is 
proportional to the main empirically observed drivers: the speed of option trading (i.e., number of 
options per unit of time), the equity stock level and the option sensitivity to the equity stock.  

In this context, the best order execution (i.e. minimizing the market impact) cannot be defined as a 
single trade, but turns out to be the sequence of small trades over the course of several days that 
optimizes a target. Minimizing market impact will be beneficial not only to the insurer through a lower 
hedging cost but also to the customer through a lower price. 

Such an order execution strategy will also depend on the insurer’s risk appetite (e.g. minimization of 
the mean cost or of the mean variance that also penalizes the dispersion of the profit and loss). The 
standard procedure of the Hamilton-Jacobi-Bellman (HJB) framework in stochastic control problems is 
applied, coupled with numerical schemes.  

In case the Equity Put option becomes too expensive (due to higher market uncertainties or too large 
market impact), the insurer will replicate them synthetically and dynamically through Equities (or 
Equity Futures) that benefit from lower transaction costs. Such a synthetic replication needs to be 
dynamic in order for linear Equities to piecewise match convex shapes of the Equity Puts as the market 
moves, which provides higher replication costs and optimal transaction size resulting from the 
“feedback” market impact of the large Equities transaction size on the Equity asset price. 

In section 2 the Equity Put price consistent with market impact is modelled and best order execution 
strategies consistent with the insurer’s risk appetite are illustrated. In section 3 the proxy synthetic 
replication through using a large quantity of Equity assets is modelled within a specific No Arbitrage 
Framework, providing a higher cost of replication and larger execution order size as compared with no 
market impact. 



4 
 

2 Dynamic risk management reduces the cost to the insurer and the price to 
the insured, by minimizing market impact with respect to the insurer’s risk 
aversion 

2.1. Equity Puts pricing model including market impact 

The model below is inspired from Leland’s option replication with transaction costs (see [9]), where 
the market impact is incorporated into the volatility of the asset σ as a market impact function f 
(dependent on time, volatility, inventory and trading rate).  

 

We follow the approach by Almgren (see [10] and [4])) where the market impact function is a 
combination of two components: a permanent component that reflects the information transmitted 
to the market by the buy/sell imbalance, and a temporary component that reflects the price 
concession needed to attract counterparties within a specified short time interval. We adapt such 
approach to derivatives through the “enlarged volatility” expression as follows: 

where  and . 

where η and γ are constants. The number of shares is x(t), while   (its derivative with regards to time) 
is the the speed of trading of the security. The term  corresponds to the temporary or instantaneous 

impact of trading  shares at time t which only affects this current order. The term  is 
the permanent price impact that was accumulated by all transactions until time t.  

Let  be the usual probability space on the filtration . In the absence of market impact 
and under a zero risk-free rate, the no-arbitrage price of a put option is defined by 

 under the risk-neutral probability measure Q under which the discounted 
asset price is a martingale.  

The Equity Put option price including market impact is then expressed through a Black-Scholes-like 
partial differential equation using the “enlarged volatility” illustrative of the market impact, where 
buying the option will typically lead to increasing its price. The higher the trading speed and quantity, 
the higher the volatility thus the option price: 

  

Using a simple Taylor approximation to the first order, the expression can be expressed as a sum of 
the Black-Scholes option price without market impact and an additional term corresponding to the 
option market impact: 
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where  is the Black-Scholes “vega” of the option: 

 

 

For simplicity of notation the permanent impact is excluded in the following sections (i.e., ). Using 
the “Vega-Gamma” relationship (Gamma is the second order sensitivity of the option price with 

respect to the underlying𝑑𝑑
2𝑃𝑃
𝑑𝑑2𝑆𝑆

, which is equal to the optimal change in the quantity of assets required 

to hedge the Put). 

 where  

 the price including market impact is then:  

. 

2.2. The Optimal Order Execution minimizes market impact with respect to the insurer’s Risk 
Appetite 

The optimal dynamic order execution strategy unfolds over the course of several days [0,T], consistent 
with changing market conditions and according market impact. Let us consider a buying order 
execution strategy x(t) in which an amount X of options with fixed strike K and maturity T are bought 
by a fixed time horizon [0,T] with the conditions x(0) = X and x(T) = 0. 

At each time t,  options are bought at price  which is the option impact price defined by the 

price equation above. Thus, the cost arising from the strategy x is  

, 

, 
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where ∆= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is the 1st order sensitivity of the option price with respect to the underlying, so called 

Black-Scholes “delta” of the option, which is equal to the quantity of assets required to hedge the Put. 

The insurer’s objective is then to minimize a certain cost objective function, which may take into 
account his risk aversion. Here we will consider two risk appetite cases:  

• the mean cost , which corresponds to the risk-neutral case (the insurer has no risk 
aversion) 

• the mean-variance cost , i.e. a risk/reward criterion, (which includes 
the mean case if λ = 0), where λ is the variance penalty 

2.2.1. Optimal Order Execution minimizing market impact with no insurer’s risk aversion 

The mean cost is usually used for an agent who does not monitor the risk of his strategy: 

. 

Theorem The optimal transaction size and pace strategies resulting in minimizing the mean cost under 
the Black-Scholes framework is illustrated in Figure 2 and characterized by 

 where         and    

Proof: see [8]  

Figure 2 
Optimal Rate of Trading depending on stock level and time passing 

 
 
Under the mean cost case, the optimal order execution strategy provides a rather stable pace of 
trading, depending only mildly on the stock price path. Besides, the insurer must acquire at a gradual 
faster rate as time passes, as expected given the fixed quantity to buy within a fixed time period. 
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2.2.1. Optimal Order Execution minimizing market impact with risk aversion 

We will now develop the optimal order execution framework under the mean-variance case (see 
Forsyth (2013) [12], Almgren (2011) [10]), where the optimal strategy turns out to be more sensitive 
to the underlying price evolution. Actually the mean-variance objective function can be approximated 
as: 

 

We then set up the dynamic programming problem where we parameterize as before the strategies x 

by their trading speed or trading rate  defined as : .  

We restrict our framework to a Markovian trading rate (i.e., the agent’s optimal trading speed at time 
t is completely determined by the current state). Using the standard procedure of deriving the 
Hamilton-Jacobi-Bellman equation in stochastic control problems, the solution to the optimization 
problem solves the following PDE: 

 

combined with the so-called finite-fuel constraint (i.e., ) . 

Although this minimization problem does not admit a closed-form solution, this quasi-linear PDE can 
be solved numerically using finite differences methods. Figure 3 illustrates the optimal order execution 
strategy through the rate of trading as a function of the underlying price S and time t.  

Figure 3 

Optimal Rate of Trading depending on stock level and time passing 

 
Note: Mean objective (λ = 0, top left) or mean-variance (λ = 1, top right; 10, bottom left; 100, bottom right) 

In contrast to the mean cost case, as the risk aversion (dispersion) λ increases, the optimal order 
execution increasingly depends on the stock path, with a faster pace as the stock level decreases, 
consistent with a higher put option cost, which implies to trade as soon as possible. Besides, as time 
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passes the trading pace decreases, as the mean-variance prevents the insurance company from waiting 
too long to buy a large quantity. 

3 The potential lack of Puts calls for a dynamic synthetic replication that 
minimizes the "feedback" effects of the stock sales on the cost of replication 

3.1. The pricing model of synthetic replication with market impact  

In case the Equity Put options become too expensive due to higher market uncertainties or too large 
market impact, or just unavailable due to the long term maturities of retirement products, the insurer 
will replicate them synthetically and dynamically through Equities (or Equity Futures) benefiting from 
lower transaction costs.  

The quality of such a piecewise synthetic approximation of the Equity Puts lies in the ability to 
dynamically fit the convex shape of the Equity Put by a series of subsequent dynamic trades in linear 
Equity assets as the Equity market changes, which involves a regularly updated quantity of Equity 
assets, equal to the sensitivity of the Equity Put to the Equity underlying (so-called “delta”). 

Unfortunately, due to market impact associated with the large Equities transaction size, such a 
dynamic sequence of Equity trades involves some market inefficiencies (so-called “feedback effects”), 
as the insurer sells Equity as the market drops or buys Equity as the market rallies, which exacerbates 
the Equity market shocks and increases the replication cost, as illustrated over the past decade (May 
2010, August 2011, August 2015, January 2016, June 2016, February 2018, October-December 2018, 
March-April 2020). 

The objective of the optimal order replication strategy is to minimize such market impact. It is 
determined by a no arbitrage framework that incorporates the impact of the large trader’s large 
transactions on Equities.  We consider here the interaction of one “large trader” whose action affects 
prices vs. many price-takers or “small traders”; the usual “no arbitrage” condition doesn’t apply. We 
use a continuous time version of Jarrow’s “no market manipulation strategies” (see Jarrow (1994) [5] 
and Bierbaum (1997) [1]), which requires additional assumptions: 

• The asset price is independent of the large trader’s past holdings  

• Real wealth (as if the holdings were liquidated) 

• Synchronous markets condition 

• Prices adjust instantaneously across underlying and derivatives  

• Absence of corners 

The dynamics of the asset price return with impact can be modeled as a modified version of the usual 
dynamics (under zero interest rates assumption) 

𝑑𝑑St
St

= 𝜎𝜎𝑡𝑡dWt + ρtdαt 

Where  
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• 𝜎𝜎𝑡𝑡dWt is the dynamics of the asset return without market impact,  

• ρtdαt is the specific market impact contribution, where 𝛼𝛼 is the transaction size in assets, while 
ρ represents the intensity of the market impact (e.g., the ratio of change in the price of the 

underlying to the quantity traded). So 1
ρtSt

 represents the market depth at time t, (the quantity 

of assets required to move prices by one unit). 

Under a zero risk-free interest rate (for simplicity of notation), the “No Arbitrage” cost of synthetic 
replication of a Put is the expected discounted future payoff under the associated martingale measure 
ℚ′, 𝑃𝑃𝑡𝑡 = 𝔼𝔼ℚ′[{(𝐾𝐾 − 𝑆𝑆𝑇𝑇)+|ℱ𝑡𝑡}] , which provides the following pricing equation as we now apply the 
Black-Scholes continuous-time delta-hedging replication framework to the modified asset return 
dynamics under ℚ′ ²(see Platen (1998) [11], Frey (1998) [3]) 

⎩
⎪
⎨

⎪
⎧𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
1
2�

𝜎𝜎𝜎𝜎

1− 𝜚𝜚𝜚𝜚 𝑑𝑑
2𝑃𝑃
𝑑𝑑2𝑆𝑆

�

2

𝑃𝑃𝑇𝑇 = 𝑛𝑛(𝐾𝐾 − 𝑆𝑆𝑇𝑇)+

𝑑𝑑2𝑃𝑃
𝑑𝑑2𝑆𝑆

= 0 

where n is the number of Equity Put options to hedge. Such a cost including market impact is equivalent 
to the cost without market impact but with so-called “feedback” volatility as below, increasing with 
both the market impact intensity ρ and the increase in the sales of assets required hedging the Put:  

𝜎𝜎� =
𝜎𝜎

�1 − 𝜚𝜚𝜚𝜚 𝑑𝑑
2𝑃𝑃
𝑑𝑑2𝑆𝑆�

 

This modified Black-Scholes equation is a fully nonlinear parabolic PDE, requiring specific numerical 
implementation ensuring accuracy, flexibility and stability (see Touzi (2011) [2] and Kalife (2012) [6]). 

3.2. Optimal synthetic replication with market impact minimizes the “feedback effects” 
stemming from the stock sales on the replication cost  

Actually, as the insurer synthetically replicates the long Equity Put position by selling a quantity of 
stocks equal to the sensitivity of the Put price to the stock, whenever market falls she has to sell 
further, which as a “feedback effect” makes the stock price fall further, compounded by a larger 
volatility thus a larger replication cost.  
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As illustrated in Figure 4, the synthetic dynamic strategy presented above enables to minimize such 
impact into an optimal replication cost that depends on the market impact intensity (“rho”). The 
associated optimal dynamic strategy in stocks is provided by the sensitivity of such optimal replication 
cost to the Equity level as illustrated further below. 

Figure 4 

Optimal replication cost and associated dynamic transaction size in Equities  

 

 
4 Conclusion 

Within the context of rapidly ageing population with increasing life expectancy, the reduction in Social 
Security to meet retirement income needs, the zero interest rates environment compounded with 
recurrent market crashes, sustainable long term savings and retirement need Equity markets upside 

Massive sales of 
assets to hedge 
downside risk 

equity declines 

hedge cost 
increases  

loss for the insurer 
which can be 

compensated by 
increase in 

insurance premium 

Sales of Savings & 
Retirment products 
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combined with some capital guarantees post a waiting period, thus embedding Equity Puts-like 
downside protection.  

Given the downside protection is subject to financial market downturns, insurance companies need to 
hedge financial risks though buying large quantities of Equity Puts, thus incurring market impact 
translating into higher hedging costs than expected. Dynamic Risk Management provides a best order 
execution strategy that minimizes the market impact thus the hedging cost with respect to the 
insurer’s risk appetite, which also benefits to the customer through a lower price.  

In case the Equity Put option becomes too expensive or illiquid, the insurer replicates them 
synthetically and dynamically through selling large Equities transactions reinforcing Equity market 
declines, which provides larger replication costs. Dynamic Risk Management provides a best order 
execution strategy that minimizes such impact on replication costs through optimal dynamic equity 
selling transactions depending on the Equity levels.  
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