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a b s t r a c t

In order to estimate the conditional risk of a portfolio’s return, two strategies can be
advocated. A multivariate strategy requires estimating a dynamic model for the vector
of risk factors, which is often challenging, when at all possible, for large portfolios. A
univariate approach based on a dynamic model for the portfolio’s return seems more
attractive. However, when the combination of the individual returns is time varying,
the portfolio’s return series is typically non stationary which may invalidate statistical
inference. An alternative approach consists in reconstituting a "virtual portfolio", whose
returns are built using the current composition of the portfolio and for which a stationary
dynamic model can be estimated. This paper establishes the asymptotic properties of this
method, that we call Virtual Historical Simulation. Numerical illustrations on simulated
and real data are provided.

© 2019 Published by Elsevier B.V.

1. Introduction

The quantitative standards laid down under Basel Accord II and III allow banks to develop internal models for setting
aside capital. Methods that incorporate time dependence to quantify market risks are able to use knowledge of the
conditional distribution. In particular, the conditional Value-at-Risk (VaR) of financial returns, with a given risk level α
(typically, α = 1% or 5%) is nothing else, from a statistical point of view, than the negated α-quantile of the conditional
distribution of the portfolio returns. Estimating conditional quantiles, or more generally conditional risk measures, of a
time series of financial returns is thus crucial for risk management.

It is also essential, for risk management purposes, to be able to evaluate the accuracy of such estimators of conditional
risks. Uncertainty implied by statistical procedures in the implementation of risk measures may lead to false security in
financial markets (see e.g. Farkas et al. (2016) and the references therein). Estimation risk thus needs to be accounted for,
in addition to market risk. However, evaluating the estimation risk for the conditional Value-at-Risk (VaR) is generally
challenging for two main reasons. Firstly, because the stochastic nature of the conditional VaR does not allow in general to
reduce the problem to the estimation of a parameter. Making inference on a stochastic process is obviously more intricate
than on a parameter. Secondly, quantiles being obtained as the solutions of optimization problems based on non-smooth
functions, establishing asymptotic properties of conditional VaR estimators may become a difficult task.

Increasing attention has been directed in the recent econometric literature to the inference of risk measures in dynamic
risk models. Francq and Zakoïan (2015) derived asymptotic confidence intervals (CI) for the conditional VaR of a series of
financial returns driven by a parametric dynamic model. Robust backtesting procedures were developed by Escanciano and
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Olmo (2010) and Escanciano and Olmo (2011), and Gouriéroux and Zakoïan (2013) studied the effect of estimation on the
coverage probabilities. Several articles proposed resampling methods: among others, Christoffersen and Gonçalves (2005)
and Spierdijk (2016) considered using bootstrap procedures for constructing CIs for VaR; Hurlin et al. (2017) proposed
bootstrap-based comparison tests of two conditional risk measures. Beutner et al. (2018) established the validity of a
fixed-design residual bootstrap method for the two-step conditional VaR estimator of Francq and Zakoïan (2015). See
Nieto and Ruiz (2016) for an extensive survey of the methods for constructing and evaluating VaR forecasts that have
been proposed in the literature.

Most existing studies on risk measure inference focus on the risk of a single financial asset. The aim of the present
article is to estimate conditional VaR’s for portfolios of financial assets. From a statistical point of view, the extension is
far from trivial. First, because evaluating the quantile of a linear combination of variables may require knowledge of the
complete joint distribution of such variables. When the object of interest is a conditional quantile, this approach requires
specifying a dynamic model for the vector of returns of the assets involved in the portfolio. Second, portfolios compositions
are generally time-varying, in particular if the agents adopt a mean–variance approach which, in a dynamic framework,
requires specifying the first two conditional moments. This typically entails non-stationarity of the portfolio’s return time
series, as we shall see in more detail.

A natural approach for obtaining the conditional VaR of a portfolio relies on specifying a multivariate GARCH model
for the vector of underlying asset returns. Rombouts and Verbeek (2009) proposed a semi-parametric approach relying
on estimating the conditional density of the innovations vector and evaluating numerically the conditional VaR of a
portfolio. The asymptotic properties of similar multivariate methods – with or without the assumption of sphericity of the
innovations vector – were investigated by Francq and Zakoïan (2018). As noted by Rombouts and Verbeek the advantage
of multivariate approaches is to ‘‘take into account the dynamic interrelationships between the portfolio components,
while the model underlying the VaR calculations is independent of the portfolio composition’’. On the other hand, for
large portfolios multivariate approaches often become untractable due to the well-known dimensionality curse.

In this paper, we consider univariate procedures aiming at handling portfolios constructed with a large number of
assets. We first consider a ‘‘naive’’ approach in which a standard volatility model is directly fitted to the portfolio returns.
Despite its empirical relevance, we will see that the naive approach is not amenable to asymptotic statistical inference
(due to the inherent non stationarity of the observed portfolio’s time series). We study the asymptotic properties of an
alternative procedure relying on a ‘‘virtual portfolio’’ constructed with the current composition of the portfolio, on which a
univariate model is fitted. This procedure – which we call Virtual Historical Simulation (VHS) – is amenable to asymptotic
statistical inference. From a numerical point of view, it allows to avoid difficulties caused by the dimensionality curse in
estimation of multivariate volatility models for vectors of asset returns.

The VHS method is related to other approaches introduced in Finance. The Basel Committee and European Union
directives (UCITS) recommend that banks backtest their VaR measures against both ‘‘clean’’ and ‘‘dirty’’ P&L’s of their
trading portfolios (see Holton (2014)). Dirty P&L’s are the actual P&L’s reported at the end of the time horizon. They can
be impacted by changes in the composition of the portfolio that occur during the VaR horizon. Since such position changes
may have exogenous causes that cannot be anticipated, it is relevant to backtest the VaR with the so-called clean P&L,
which is the hypothetical P&L that would occur if the composition of the portfolio remained unchanged and if market
moves were the only source of P&L change (see Pérignon et al. (2008)). Clean P&L thus excludes P&L arising from intra-Day
trading, new trades, changes in reserves, fees and commissions. Clean P&L’s are often used in the backtesting process, but
they can also be used for VaR estimation. The VHS method exploits the idea of cleaning the P&L’s for computing the VaR.
At each past date t , one can compute a virtual return – the opposite of a clean (or hypothetical) P&L – that would occur if
day t positions were exactly those of the current date. Even if each bank uses its own internal VaR model, most financial
institutions compute VaR through filtered or simple historical simulations on plain or hypothetical (virtual) returns (see
Laurent and Omidi Firouzi (2017). This is the aim of the present paper to study the asymptotic properties of such VaR
evaluation methods.

The paper is organized as follows. Section 2 defines the conditional VaR of a portfolio whose composition at the
current date may depend on the historical prices, and presents the naive and VHS estimation methods. In Section 3 we
derive the asymptotic properties of the VHS procedure based on the Gaussian Quasi-Maximum Likelihood (QML) criterion,
under general assumptions on the volatility model. Section 4 presents some numerical illustrations based on Monte Carlo
experiments and real financial data. Proofs are collected in Appendix.

2. Estimating the conditional VaR

2.1. Conditional VaR of a dynamic portfolio

Let pt = (p1t , . . . , pmt )′ denote the vector of prices of m assets at time t . Let yt = (y1t , . . . , ymt )′ denote the
corresponding vector of log-returns, with yit = log(pit/pi,t−1) for i = 1, . . . ,m.

Let Vt denote the value at time t of a portfolio composed of µi,t−1 units of asset i, for i = 1, . . . ,m:

V0 =

m∑
i=1

µipi0, Vt =

m∑
i=1

µi,t−1pit , for t ≥ 1 (2.1)
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where the µi,t−1 are measurable functions of the prices up to time t − 1, and the µi are constants. The return of the
portfolio over the period [t − 1, t] is, for t ≥ 1, assuming that Vt−1 ̸= 0,

Vt

Vt−1
− 1 =

m∑
i=1

ai,t−1eyit − 1 ≈

m∑
i=1

ai,t−1yit + a0,t−1

where

ai,t−1 =
µi,t−1pi,t−1∑m
j=1 µj,t−2pj,t−1

, i = 1, . . . ,m and a0,t−1 = −1 +

m∑
i=1

ai,t−1.

We assume that, at date t , the investor may rebalance his portfolio under a ‘‘self-financing’’ constraint.

SF: The portfolio is rebalanced in such a way that
∑m

i=1 µi,t−1pit =
∑m

i=1 µi,tpit .

In other words, the value at time t of the portfolio bought at time t−1 equals the value at time t of the portfolio bought at
time t . An obvious consequence of the self-financing assumption SF, is that the change of value of the portfolio between
t − 1 and t is only due to the change of value of the underlying assets:

Vt − Vt−1 =

m∑
i=1

µi,t−1(pi,t − pi,t−1).

Another consequence is that the weights ai,t−1 sum up to 1, that is a0,t−1 = 0. Thus, under SF we have Vt
Vt−1

− 1 ≈ rt ,
where

rt =

m∑
i=1

ai,t−1yit = a′

t−1yt , ai,t−1 =
µi,t−1pi,t−1∑m
j=1 µj,t−1pj,t−1

, (2.2)

for i = 1, . . . ,m, and at−1 = (a1,t−1, . . . , am,t−1)′. A portfolio is usually called crystallized when the number of units of
each asset is time independent, that is µi,t−1 = µi for each i = 1, . . . ,m and for all t . We will call static a portfolio with
fixed proportion in value of each return, that is when ai,t−1 = ai for each i = 1, . . . ,m and for all t .

The conditional VaR of the portfolio’s return process (rt ) at risk level α ∈ (0, 1), denoted VaR(α)
t−1(rt ), is characterized by

VaR(α)
t−1(rt ) = inf{x : Pt−1(−rt ≤ x) ≥ 1 − α} (2.3)

where Pt−1 denotes the historical distribution conditional on the information It−1 available at time t−1. The specification
of It−1 will depend on the approach used. Multivariate approaches use full information, that is all past prices of all assets.
In the next approach we describe a univariate approach which only uses the past returns of the portfolio.

2.2. The naive approach

A natural approach for evaluating the conditional VaR in (2.3) when It−1 = σ (rs, s < t) is to estimate a univariate
GARCH model, or any time series model, on the series of portfolio returns. We will see that this approach, which can be
called ‘‘naive’’, may be misleading due to the fact that the return’s portfolio is a time-varying combination of the individual
returns.

For simplicity, we consider a crystallized portfolio, with weight µi and initial price pi0 for the asset i ∈ {1, . . . ,m}. The
composition at−1 of such a portfolio is non stationary in general. Indeed, we have

log
(
ai,t
aj,t

)
= log

(
µipi,0
µjpj,0

)
+

t∑
k=1

∆i,j,k, ∆i,j,k = yi,k − yj,k,

and (
∑t

k=1 ∆i,j,k)t≥1 is a non stationary integrated process of order 1 under general assumptions.1 More precisely, a
consequence of the following lemma is that, with probability tending to one, the composition at−1 of the portfolio
converges to the set of the vectors ei of the canonical basis (corresponding to single-asset portfolios): P(at−1 ∈

{e1, . . . , em}) → 1 as t → ∞.

Lemma 2.1. Consider a process (∆k)k≥1. Assume that there exist real sequences an > 0 and bn, both tending to zero, such
that

Zn := an
n∑

k=1

∆k + bn
L
→ Z as n → ∞, (2.4)

1 By the Chung–Fuks theorem, this is the case when yt is iid with zero mean and a non-singular covariance matrix Σ. The non stationarity of
the process also holds, for instance, if the sequence (∆i,j,k)k is mixing and nondegenerated.
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for some random variable Z, whose cdf is continuous at 0 and such that p = P(Z > 0) ∈ (0, 1). Then, for any c > 0, we have
P(
∑n

k=1 ∆k > c) → p and P(
∑n

k=1 ∆k < −c) → 1 − p as n → ∞.

Note that a generalized central limit theorem of the form (2.4) holds for any iid sequence (∆k) whenever the
distribution of ∆k belongs to the domain of attraction of Z , which then follows a stable distribution. If the assumptions
of Lemma 2.1 hold with ∆k = ∆i,j,k for any pair (i, j), with i ̸= j, then all the ratios ai,t/aj,t are arbitrarily close to either
1 or 0 with probability tending to 1 as t → ∞. In that case, the composition at−1 tends to be totally undiversified, but
is not always close to the same single-asset composition ei. If the dynamics of the individual returns yit are not identical,
the dynamics of the return rt will be time-varying, and the naive method based on a fixed stationary GARCH model is
likely to produce poor results.

Simulation experiments reported in Section 4 confirm that for crystallized portfolios, the naive approach may behave
badly due to the non stationarity of the univariate returns rt . Of course, for static portfolios the non stationarity issue
vanishes, but such portfolios may be considered as artificial.2 The next section studies a remedy to the non stationarity
issue, while keeping the univariate framework.

2.3. The VHS approach

An alternative to the naive approach consists in reconstituting a ‘‘virtual portfolio’’, whose returns are built using the
current composition of the portfolio. Given the portfolio composition at0−1 = x, say, at time t0, we construct a process of
virtual returns

r∗

t (x) = x′yt , t ∈ Z

and we consider the information set It0−1 = σ (r∗
s (x), s < t0). Note that, in general, r∗

t (x) ̸= rt because the composition of
the (non virtual) portfolio is time varying (at−1 ̸= x, in general, for t ̸= t0). Given the stationarity of (yt ), it is clear that
the series of virtual returns {r∗

t (x)} is also stationary, with conditional moments

Et−1[r∗

t (x)] =: µt (x), vart−1[r∗

t (x)] =: σ 2
t (x),

where Et−1(X) = E(X | r∗
s (x), s < t) for any variable X , and the variance is defined accordingly. Thus, r∗

t (x) follows a model
of the form

r∗

t (x) = µt (x) + σt (x)ut , where Et−1(ut ) = 0 and vart−1(ut ) = 1. (2.5)

Noting that rt0 = r∗
t0 (at0−1), the conditional VaR at time t0 thus satisfies

VaR∗(α)
t0−1(rt0 ) = −µt0 (at0−1) + σt0 (at0−1)VaR

∗(α)
t0−1(ut0 ) (2.6)

where VaR∗(α)
t−1 (X) is the VaR of X at level α conditional on It−1.

Note that the martingale difference (ut ) may not be iid, as the following example illustrates.

Example 2.1. Consider the bivariate ARCH(1) process, defined as the stationary non anticipative solution of the model

yt =

(
y1t
y2t

)
= Σtηt , Σt =

(
σ 2
1t := ω1 + α11y21,t−1 + α12y22,t−1 0

0 σ 2
2t := ω2 + α21y21,t−1

)
,

where ηt is iid (0, I), and assuming that the components η1t and η2t are independent. Let a portfolio which is fully invested
in the first asset, hence rt = (1, 0)yt = y1t for all t . Denote by F1t the σ -field generated by {y1u, u ≤ t}. We have
E(rt |F1,t−1) = 0 and

E(r2t |F1,t−1) = E(σ 2
1t |F1,t−1) = ω1 + α11y21,t−1 + α12E(y22,t−1|F1,t−1)

= ω1 + α11y21,t−1 + α12σ
2
2,t−1E(η

2
2,t−1|F1,t−1)

= ω1 + α11y21,t−1 + α12σ
2
2,t−1 := σ 2

t .

It follows that (rt ) satisfies the model rt = σtut , where

ut =
σ1t

σt
η1t =

(
1 +

α12σ
2
2,t−1(η

2
2,t−1 − 1)

ω1 + α11y21,t−1 + α12σ
2
2,t−1

)1/2

η1t .

It is then clear that (ut ,F1,t ) is a martingale difference but (ut ) is generally not iid (except when α12 = 0 or η2
2,t is

degenerated).

2 As it would require rebalancing every day in order to maintain a fixed composition in percentages. In general, portfolios are rebalanced to
minimize risk, leading to a non-static composition.
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Even in the simple previous example, the conditional quantile VaR∗(α)
t0−1(ut0 ) popping up in (2.6) cannot be explicitly

computed. Whether or not this quantity could be estimated nonparametrically is beyond the scope of this paper. Instead,
we consider a ‘‘hybrid’’ VaR defined by

VaR(α)
H,t0−1(rt0 ) = −µt0 (at0−1) + σt0 (at0−1)VaR(α)(u) (2.7)

where VaR(α)(u) is the marginal VaR of ut at level α. An estimator of VaR(α)
H,t0−1(rt0 ) is obtained as follows: given at0−1 = x,

Step 1: Compute the virtual historical returns r∗
t (x) for t = 1, . . . , n.

Step 2: Estimate µt (x) and σt (x). Denote by µ̂t (x) and σ̂t (x) the resulting estimators, and by ût = {r∗
t (x)− µ̂t (x)}/σ̂t (x)

the residuals.
Step 3: Compute the α-quantile ξn,α of {ûs, 1 ≤ s ≤ n} and define an estimator of VaR(α)

H,t0−1(rt0 ) as

V̂aR
(α)
VHS,t0−1(rt0 ) = −µ̂t0 (x) − σ̂t0 (x)ξn,α. (2.8)

Step 2 can be implemented by estimating a parametric model. This approach will be developed in Section 3.
This procedure is particularly appropriate for large portfolios, when the large dimension of the vector of underlying

assets precludes – or at least formidably complicates – estimation of multivariate volatility models. Moreover, the
following example shows that for large portfolios a univariate GARCH model is a reasonable assumption for the virtual
returns.

Example 2.2. Suppose that m is large and that the vector of log-returns is driven by a vector f t of K factors (with K ≪ m)
as

yt = βf t + ut

where β is a m × K matrix, vart−1(f t ) = F t is a full-rank matrix and vart−1(ut ) = Σt . With a composition fixed to x, the
virtual portfolio’s returns thus satisfy

r∗

t = x′βf t + x′ut .

Suppose that the portfolio is well-diversified, so that the components xi of x satisfy xi = O(1/m) for i = 1, . . . ,m as
m → ∞. Under appropriate assumptions vart−1(x′ut ) converges to 0 as m → ∞. On the other hand, vart−1(x′βf t ) =

x′βF tβ
′x = OP (1) and does not vanish as m increases under appropriate assumptions.3 It follows that r∗

t ≈ x′βf t . If now
K = 1 and the (real-valued) factor ft is the solution of a GARCH model, the process x′βt will follow the same model up
to a change of scale. It is therefore natural to fit a GARCH model for the virtual returns under these assumptions when m
is large.

3. Asymptotic properties of the VHS approach

To obtain asymptotic properties of the VHS procedure, we make the following parametric assumptions on Model
(2.5). For simplicity, we consider the model without conditional mean, that is µt (x) = 0. For some (known) function
σ : R∞

× Θ → (0, ∞), let

σt (x; θ) = σ (r∗

t−1(x), r
∗

t−2(x), . . . ; θ), (3.1)

where θ0 = θ0(x) is the true value of the finite dimensional parameter θ, belonging to some compact subset Θ of Rd.
To alleviate notations, we will denote the virtual returns by ϵt := r∗

t (x) and replace σt (x; θ) by σt (θ). Model (2.5) thus
writes

ϵt = σt (θ0)ut , where for all θ ∈ Θ, σt (θ) = σ (ϵt−1, ϵt−2, . . . ; θ). (3.2)

Given (virtual) observations ϵ1, . . . , ϵn, and arbitrary initial values ϵ̃i for i ≤ 0, we define

σ̃t (θ) = σ (ϵt−1, ϵt−2, . . . , ϵ1, ϵ̃0, ϵ̃−1, . . . ; θ).

The Gaussian QML criterion is defined by

Q̃n(θ) =
1
n

n∑
t=1

ℓ̃t , ℓ̃t = ℓ̃t (θ) =
ϵ2
t

σ̃ 2
t (θ)

+ log σ̃ 2
t (θ). (3.3)

3 For instance if the matrix β does not contain too many zeros or, more precisely, if at least one column βj of β is such that lim inf |x′βj| > 0
as m → ∞.
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Let the QML estimator of θ0,

θ̂n = argmin
θ∈Θ

Q̃n(θ), (3.4)

which has the particularity of being based on virtual returns rather than on observations.
To study the asymptotic properties of the VHS estimator,

V̂aR
(α)
VHS,t0−1(rt0 ) = −σ̃t0 (θ̂n)ξn,α, (3.5)

we introduce the following additional assumptions. Recall that iidness of the sequence (ut ) is not a natural assumption
in our framework (see Example 2.1). Let Dt (θ) = σ−1

t (θ)∂σt (θ)/∂θ, Dt = Dt (θ0). Let also Ft the sigma-field generated by
{uk, k ≤ t}, and Ft:t−s the sigma-field generated by {uk, t − s ≤ k ≤ t} with s > 0.

A1: The sequence (ut ) is stationary, with E|ut |
4+ν < ∞ for some ν > 0, and mixing coefficients {α(h)}h≥0 satisfying, for

ϵ ∈ (0, ν),
∞∑
h=1

hr∗
{α(h)}

ν−ϵ
4+ν−ϵ < ∞ for some r∗ >

2κ{2 + ν − ϵ}

ν − ϵ − 2κ{2 + ν − ϵ}
and κ ∈

(
0,

ν − ϵ

4(2 + ν − ϵ)

)
.

Suppose that E(ut | Ft−1) = 0 and E(u2
t | Ft−1) = 1. Let ξα the α-quantile of ut . Assume that the conditional

distribution of ut given Ft−1 has a density ft−1 such that ft−1(ξα) > 0 a.s. and E supξ∈V (ξα ) f
4
t−1(ξ ) < ∞ for some

neighborhood V (ξα) of ξα . Assume also that this density is continuous at ξα uniformly in Ft−1, in the sense that for
sufficiently small ε > 0, there exists a stationary and ergodic sequence (Kt ) such that Kt−1 ∈ Ft−1 and

sup
x∈[ξα−ε,ξα+ε]

|ft−1(x) − ft−1(ξα)| ≤ Kt−1ε

with EK 4
t < ∞ a.s.

A2: (ϵt ) is a strictly stationary and ergodic solution of (3.2), and there exists s0 > 0 such that E|ϵ1|
s0 < ∞.

A3: There exists a sequence Dt,Tn such that Dt = Dt,Tn +oP (1) as n → ∞, where Tn → ∞ and Tn = O(nκ ) (with κ defined
in A1), Dt,Tn ∈ Ft−1:t−Tn and for any r ≥ 0

E∥Dt∥
r < ∞, sup

n≥1
E∥Dt,Tn∥

r < ∞.

A4: For some ω > 0, almost surely, σt (θ) and σ̃t (θ) belong to (ω, ∞] for any θ ∈ Θ and any t ≥ 1. For θ1, θ2 ∈ Θ , we
have σt (θ1) = σt (θ2) a.s. if and only if θ1 = θ2. Moreover, for any x ∈ Rm, x′Dt (θ0) = 0 a.s. entails x = 0.

A5: There exist a random variable C which is measurable with respect to {ϵt , t < 0} and a constant ρ ∈ (0, 1) such that
supθ∈Θ |σt (θ) − σ̃t (θ)| ≤ Cρt .

A6: The function θ ↦→ σ (x1, x2, . . . ; θ) has continuous second-order derivatives, and

sup
θ∈Θ

∂σt (θ)
∂θ

−
∂σ̃t (θ)

∂θ

+

∂2σt (θ)
∂θ∂θ′

−
∂2σ̃t (θ)
∂θ∂θ′

 ≤ Cρt ,

where C and ρ are as in A5.
A7: There exists a neighborhood V (θ0) of θ0 and τ > 0 such that

sup
θ∈V (θ0)

 1
σt (θ)

∂σt (θ)
∂θ

4 , sup
θ∈V (θ0)

 1
σt (θ)

∂2σt (θ)
∂θ∂θ′

2 , sup
θ∈V (θ0)

⏐⏐⏐⏐σt (θ0)
σt (θ)

⏐⏐⏐⏐
2(4+ν)(1+τ )

2+ν

,

have finite expectations, where ν is as in A1.

Assumptions A2, A4 and A5, together with E(u2
t | Ft−1) = 1, are sufficient to prove the strong consistency of the QML

estimator θ̂n. Assumption A6 allows to show that the initial values ϵ̃i do not matter for the asymptotic normality of θ̂n.
Assumptions A1, A3 and A7 are used to apply a CLT for a mixing triangular array based on the approximation of Dt by
Dt,Tn .

For particular volatility models, some of the assumptions can be simplified as the following lemma shows.

Lemma 3.1. For the standard GARCH(1,1) model

ϵt = σtut , σ 2
t = ω0 + α0ϵ

2
t−1 + β0σ

2
t−1, ω0 > 0, α0 > 0, β0 > 0, (3.6)

where (ut ) satisfies A1, Assumptions A2–A7 reduce to: (i) E log(α0u2
t +β0) < 0; (ii) u2

t has a non-degenerate distribution; (iii)
Θ = {(ω, α, β)} is a compact subset of (0, ∞)3 such that, for all θ ∈ Θ , ω > ω for some ω > 0 and β < 1. (iv) E|ϵt |

s0 < ∞

for s0 > 0, where (ϵt ) is the strictly stationary solution implied by (i).

We are now in a position to state our main result.
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Theorem 3.1. Assume ξα < 0. Let A1–A7 hold. Then θ̂n → θ0 a.s. as n → ∞, and(
√
n
(
θ̂n − θ0

)
√
n(ξα − ξn,α)

)
L
→ N (0,Σα), Σα =

(
J−1S11J−1 Λα

Λ′
α ζα

)
,

where J = E(DtD′

t ) with Dt = Dt (θ0), and

Λα =
ξα

4E[ft−1(ξα)]
J−1S11J−1Ψα +

1
2E[ft−1(ξα)]

J−1S12
α , Ψα = E[ft−1(ξα)Dt ],

ζα =
1

{E[ft−1(ξα)]}2

(
1
4
ξ 2
αΨ

′

αJ
−1S11J−1Ψα + ξαΨ

′

αJ
−1S12

α + S22
α

)
,

S11
= E

[(
u2
t − 1

)2 DtD′

t

]
, S22

α =

∞∑
h=−∞

cov
(
1{ut<ξα}, 1{ut−h<ξα}

)
,

S12
α = S21′

α =

∞∑
h=0

cov[(u2
t − 1)Dt , 1{ut+h<ξα}].

Remark 3.1. When the errors ut are iid, the expression of the asymptotic covariance matrix simplifies considerably. More
precisely, we have

S11
= (κ4 − 1) J , S22

α = α(1 − α), S12
α = S21′

α = [E
(
u2
t 1{ut<ξα}

)
− α]E(Dt ) := pαE(Dt ),

Λα =

(
ξα(κ4 − 1)

4
+

pα

2f (ξα)

)
J−1Ω, Ω = E(Dt ),

ζα =
κ4 − 1

4
ξ 2
αΩ

′J−1Ω +
ξαpα

f (ξα)
Ω′J−1Ω +

α(1 − α)
f 2(ξα)

=
κ4 − 1

4
ξ 2
α +

ξαpα

f (ξα)
+

α(1 − α)
f 2(ξα)

.

where f denotes the density of ut , and κ4 = Eu4
t . For the last equality, we used the relation Ω′J−1Ω = 1 (see (8) in Francq

and Zakoïan (2013)). Hence, when (ut ) is iid we have

Σα =

⎛⎝ (κ4 − 1) J−1
(

ξα (κ4−1)
4 +

pα

2f (ξα )

)
J−1Ω(

ξα (κ4−1)
4 +

pα

2f (ξα )

)
Ω′J−1 κ4−1

4 ξ 2
α +

ξαpα

f (ξα )
+

α(1−α)
f 2(ξα )

⎞⎠ .

In particular, the asymptotic variance of
√
n(ξα − ξn,α) only depends on the errors distribution, not on the volatility

parameter θ0. Nevertheless, the estimation of θ0 affects the asymptotic accuracy, since the asymptotic variance would
be equal to α(1−α)

f 2(ξα )
if the ut ’s were observed.

Remark 3.2. Consistent estimation of Σα is crucial for evaluating the estimation risk. Some matrices involved in the
asymptotic covariance matrix have the form of expectations, and can therefore be straightforwardly estimated by their
empirical counterpart. This is the case of J and S11. To estimate S22

α and S12
α , a classical HAC (heteroskedasticity and

autocorrelation consistent) estimator can be used (see for instance Andrews (1991), Newey and West (1987)). Estimation
of the matrix Ψα is more tricky. We propose two approaches: (i) noting that

Ψα = lim
h→0

1
h
E [{Pt−1(ut < ξα + h) − Pt−1(ut < ξα)}Dt ]

= lim
h→0

1
h
E
[
Et−1{1{ut<ξα+h} − 1{ut<ξα}}Dt

]
= lim

h→0

1
h
E
[
(1{ut<ξα+h} − 1{ut<ξα})Dt

]
,

a natural estimator for Ψα is

Ψ̂α =
1

nhn

n∑
t=1

(1{ût<ξn,α+hn} − 1{ût<ξn,α})D̂t ,

where D̂t = σ̃−1
t (θ̂n)∂σ̃t (θ̂n)/∂θ and hn is a bandwidth parameter; (ii) alternatively, one may approximate ft−1 by the

density of ut conditional on ut−1 (instead of the infinite past). A standard kernel estimator for this density at point ξα is

f̂t−1(ξα) =

∑n
s=1 Kh2 (ût−1 − ûs−1)Kh1 (ξα − ûs)∑n

s=1 Kh2 (ût−1 − ûs−1)
,
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where h1, h2 are bandwidths, Kh(x) = h−1K (x/h) for any bandwidth h, and K is a bounded symmetric kernel function (see
e.g. Hansen (2004)). Matrix Ψα can thus be estimated by

Ψ̂◦

α =
1
n

n∑
t=1

f̂t−1(ξα)D̂t .

The asymptotic properties under Assumptions A1–A7 of both estimators, Ψ̂α and Ψ̂◦
α , are left for further research.

We have the Taylor expansion

Ft0 (θ̂n, ξn,α) := σ̃t0 (θ̂n)ξn,α = Ft0 (θ0, ξα) +
∂

∂(θ′, ξ )
Ft0 (θ

∗

n, ξ
∗

n )
√
n
(

θ̂n − θ0
ξα − ξn,α

)
,

where (θ∗

n, ξ
∗
n ) is between (θn, ξn,α) and (θ0, ξα). Given a fixed information set It0−1, it can be shown using A5–A6 that the

observations available at time t0 − 1 have no effect on the asymptotic distribution of Theorem 3.1. Thus, an approximate
conditional (1 − α0)% CI for the hybrid VaR (2.7) has bounds given by

V̂aR
(α)
VHS,t0−1(rt0 ) ±

1
√
n
Φ−1(1 − α0/2)

{
δ′

t0−1Σ̂αδt0−1
}1/2

, (3.7)

where V̂aR
(α)
VHS,t0−1(rt0 ) is defined in (3.5), Σ̂α is a consistent estimator of Σα and

δ′

t0−1 =

(
∂σ̃t0 (θ̂n)

∂θ
ξn,α σ̃t0 (θ̂n)

)
.

In other words,

lim
n→∞

Pt0−1

[⏐⏐⏐VaR(α)
H,t0−1(rt0 ) − V̂aR

(α)
VHS,t0−1(rt0 )

⏐⏐⏐ ≤
1

√
n
Φ−1(1 − α0/2)

{
δ′

t0−1Σ̂αδt0−1
}1/2]

= 1 − α0.

Remark 3.3. It is worth noting that the previous CI has to be understood conditionally on It0−1 for fixed t0. In particular,
it cannot be directly applied when t0 −1 = n. Indeed, the bounds in (3.7) are no longer random in this case.4 See Beutner
et al. (2019) for an asymptotic justification of this type of CI for conditional objects.

4. Numerical illustrations

An alternative to the univariate approaches is a multivariate strategy, requiring a dynamic model for the vector of risk
factors yt . We describe in Appendix A two multivariate approaches — the spherical method and the Filtered Historical
Simulation (FHS) method. Such methods might perform better than univariate ones because they incorporate information
stemming from individual returns rather than an aggregate information stemming from portfolio returns. However, at
least for large portfolios, multivariate approaches can be very challenging, when at all possible.

The first section is devoted to numerical comparisons of the different methods. We first study the reliability of the
naive approach in a static framework where the returns are iid and the portfolio is crystallized. In a dynamic framework,
we then compare the performance of the univariate and multivariate approaches when the dynamic multivariate model is
well specified and the dimension is small. Next, we consider misspecified GARCH models and, possibly, higher dimensions.
The second section concerns real data examples based on large sets of US stocks.5

4.1. Monte-Carlo experiments

The theoretical conditional VaR in (2.3) depends on the information set It−1. In our first two sets of experiments, the
vector of individual returns will be simulated using multivariate GARCH and the different estimators will be compared
to the same target VaR obtained by taking the full information set (i.e. including the returns of the individual assets, not
only the returns of the portfolio). In the third set of experiments, we will estimate a misspecified multivariate model for
which the true conditional VaR is no longer available.

4 Except if one assumes, as in Gong et al. (2010), that the number of conditioning values is finite as in the ARCH(q) case.
5 The code and data used in the paper are available on the web site http://perso.univ-lille3.fr/~cfrancq/Christian-Francq/VaRPortfolio.html.

http://perso.univ-lille3.fr/~cfrancq/Christian-Francq/VaRPortfolio.html
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Fig. 1. Time-varying composition of the simulated crystallized portfolio.

4.1.1. Static model and crystallized portfolio
For a simple illustration of Lemma 2.1, we consider a crystallized equally weighted portfolio of 3 assets (of initial price

pi0 = 1000): Vt =
∑3

i=1 pit and µi,t = 1 for i = 1, 2, 3. Thus, the return portfolio composition is time varying, with
coefficients at−1 = (a1,t−1, a2,t−1, a3,t−1)′ and ai,t−1 = pi,t−1/

∑3
j=1 pj,t−1. Assume that the vector of the log-returns is iid,

Gaussian, centered, with variance Var(yt ) = Σ2
= DRD, with

D =

(0.01 0 0
0 0.02 0
0 0 0.04

)
, R =

( 1 −0.855 0.855
−0.855 1 −0.810
0.855 −0.810 1

)
.

The composition at−1 of the portfolio is plotted in Fig. 1. As we have seen in Section 2.2, this vector is non stationary. More
precisely, as discussed in Section 2.2, with increasing probability the composition at−1 of the portfolio is arbitrarily close
to one of the three single-asset portfolios (1, 0, 0), (0, 1, 0) and (0, 0, 1). Experiments conducted with different parameters
(in particular different correlation matrices) led to the same conclusion.

It is thus non surprising to see that the univariate return series rt plotted in Fig. 2 exhibits some nonstationarity
features, in particular unconditional heteroscedasticity. The increased variance in the second part of the sample reflects
the fact that the portfolio tends to be less and less diversified (see Fig. 1).

WhenΣt andmt are constant, the FHS estimator in (A.7) reduces to the opposite of the quantile of the portfolio’s virtual
returns: V̂aR

(α)
FHS,t−1(rt ) := −qα

(
{a′

t−1y1, . . . , a′

t−1yt−1}
)
and this estimator coincides with the VHS estimator. These empir-

ical quantiles were computed starting from t = 100. The naive estimator is the opposite of the quantile of the portfolio’s
returns: V̂aR

(α)
N,t−1(rt ) = −qα

(
{a′

1y1, . . . , a′

t−1yt−1}
)
. The spherical method, based on the estimation of Σ, was computed on

the same range of observations. In view of (A.6), we have V̂aR
(α)
S,t−1(rt ) =

√
a′

t−1Σ̂t−1at−1q1−2α
(
{Σ̂

−1
t−1y1, . . . , Σ̂

−1
t−1yt−1}

)
,

where Σ̂t−1 is the empirical covariance matrix of the observations y1, . . . , yt−1. Fig. 3 displays the sample paths of the true
conditional VaR as well as the estimated VaRs. It can be seen that the spherical method converges faster to the true value
than the FHS = VHS method. Unsurprisingly, the univariate naive method fails to converge to the theoretical conditional
VaR based on the full information set. Now we turn to a less artificial setting.

4.1.2. Well-specified multivariate GARCH models
In this section, we simulate the process of log-returns yt = Σtηt from the corrected Dynamic Conditional Correlation

(cDCC) GARCH model of Aielli (2013). For the multivariate approaches, we estimate the same cDCC-GARCH(1,1) model.
For the univariate approaches we estimate GARCH(1,1) models, which are generally misspecified (see Example 2.1).

We consider the minimum variance portfolio variance given by

rt = y ′

tat−1, at−1 =
Σ

−2
t e

e′Σ
−2
t e

, where e = (1, . . . , 1)′ ∈ Rm. (4.1)

We simulated N independent trajectories of length n for the cDCC-GARCH(1,1) model. On each simulation, the first n1

observations are used (i) to obtain an estimator ϑ̂n1 of the parameters involved in Σt by the three-step estimator defined
in Appendix C of Francq and Zakoïan (2018), and (ii) to estimate the quantiles required for the VaR estimator. On the last
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Fig. 2. Returns of the simulated crystallized portfolio.

Fig. 3. True and estimated VaRs of the crystallized portfolio.

n − n1 simulations, i.e. for t = n1 + 1, . . . , n, we compared the theoretical VaR of the portfolio with the three estimates
obtained from the spherical, FHS and VHS methods. We considered portfolios of m = 2 assets. The different designs,
displayed in Appendix C, correspond to spherical (designs A–H) or non spherical (designs A∗-H∗) distributions.

We took N = 100 independent replications, and n − n1 = 1000 out-of-sample predictions for each simulation. In
each design, we then compared the corresponding 100,000 theoretical values of the conditional VaR with their estimates
obtained by the spherical, FHS and VHS methods. Denote by MSES , MSEFHS and MSEVHS the mean square errors (MSE) of
prediction of the three methods. Table 1 displays the relative efficiency (RE) of the spherical method with respect to the
FHS and the VHS methods, as measured by the ratios MSEFHS/MSES and MSEVHS/MSES . It should be underlined that all
MSE’s are computed with respect to the full information VaR’s, which a priori favors the multivariate methods. Let us first
briefly compare the two multivariate approaches: in designs A–H (with spherical distributions) the spherical method is as
expected more efficient than the FHS method (for Designs C and D, the spherical method can be twice more efficient than
the other multivariate method). On the contrary, the bottom panel of Table 1 reveals that, when the density is strongly
asymmetric, the FHS method can be much more efficient than the spherical method.

One question of interest is whether the VHS estimator (targeted to estimate the hybrid VaR) can be used to approximate
this full-information VaR. Let us first compare the VHS method to the multivariate approaches in the spherical case.
The univariate VHS method is apparently dominated by the multivariate methods in designs A–H but one has to recall
that the reference VaR to which the methods are compared is designed for the multivariate framework. Better results
are obtained for the VHS method in designs E–H (identically distributed returns) as opposed to A–D, and for designs
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Table 1
Relative efficiency of the Spherical method with respect to the FHS method (MSEFHS/MSES ) and with respect to the VHS method (MSEVHS/MSES ) for
predicting the full-information VaR. Designs A–H correspond to spherical distributions, Designs A∗-H∗ correspond to non-spherical distributions (see
Appendix C). The number of independent replications of each design is 100 and, for each simulation, n1 observations were used for estimation and
1000 out-of-sample predictions were computed.
n1 α A B C D E F G H

500 1% MSEFHS/MSES 1.12 1.11 2.57 2.35 1.08 1.17 1.23 1.42
MSEVHS/MSES 53.9 16.9 188. 82.0 1.63 1.53 2.42 2.18

5% MSEFHS/MSES 1.21 1.03 1.81 1.40 1.18 1.12 1.12 1.19
MSEVHS/MSES 28.7 9.76 130. 74.6 1.69 1.56 2.31 1.99

1000 1% MSEFHS/MSES 1.30 1.11 2.35 1.62 1.53 1.51 1.57 1.36
MSEVHS/MSES 91.6 23.4 303. 79.8 1.93 2.53 4.43 2.23

5% MSEFHS/MSES 1.14 1.03 2.07 1.00 1.25 1.08 1.33 1.01
MSEVHS/MSES 55.4 15.7 267. 82.5 1.75 2.44 4.14 2.01

A∗ B∗ C∗ D∗ E∗ F∗ G∗ H∗

500 1% MSEFHS/MSES 0.08 0.06 0.03 0.04 0.12 0.10 0.10 0.12
MSEVHS/MSES 2.70 4.45 2.78 3.32 0.18 0.14 0.16 0.18

5% MSEFHS/MSES 0.32 0.32 0.13 0.25 0.45 0.52 0.46 0.53
MSEVHS/MSES 5.3 11.0 10.2 14.9 0.65 0.66 0.71 0.73

1000 1% MSEFHS/MSES 0.08 0.03 0.02 0.02 0.06 0.03 0.03 0.04
MSEVHS/MSES 2.20 2.43 2.31 1.67 0.05 0.04 0.07 0.06

5% MSEFHS/MSES 0.34 0.19 0.09 0.11 0.30 0.24 0.21 0.29
MSEVHS/MSES 3.78 6.68 10.2 8.72 0.26 0.35 0.59 0.44

{A,B,E,F} as opposed to {C,D,G,H} (independent returns). This can be intuitively explained as follows. Univariate methods
are expected to behave better when the trajectories of the underlying returns are close, which is the case when the two
assets have similar dynamic models and are strongly dependent. It is thus non surprising to note that the worst results for
the VHS (by comparison with the multivariate methods) occur for designs C-D (independent returns with very different
dynamics), and the best results occur with designs E-F (dependent identically distributed returns).

In the case of non-spherical distributions (designs A*-H*) the same conclusions hold: the more dependent the assets
and the closer their dynamics, the better results for the VHS. This method clearly outperforms the spherical approach in
designs E*-H*. Unexpectedly, the results reveal that the univariate VHS method can even outperform the FHS approach
(design E* with n1 = 1000).

From these experiments, it appears that the accuracy of the approximation provided by the VHS approach is very
dependent from the model parameters. However, these first two examples clearly favor the multivariate methods by
assuming that the dynamic model is well specified. In the next example, we consider a data generating process that does
not belong to the GARCH class, and we will compare the different methods using backtests.

4.1.3. Misspecified GARCH models
We simulated m-multivariate factor models, with two GARCH factors of the form

f1t = σ1tη1t , f2t = σ2tη2t ,

where (η1t )t and (η2t )t are two independent sequences of iid N (0, 1)-distributed random variables. The volatilities follow
standard GARCH(1, 1) equations of the form

σ 2
it = ωi + αif 2i,t−1 + βiσ

2
i−1,t .

We took (ω1, α1, β1) = (1, 0.09, 0.87) and (ω2, α2, β2) = (0.1, 0.7, 0.01), so that the dynamics of the two factors be quite
distinct. The even and odd components of our simulated factor model are respectively of the form

y2k,t = f2t + e2k,t , y2k+1,t = f1t + e2k+1,t ,

where (ek,t )t , for k = 1, . . . ,m, are idiosyncratic independent iid noises with law N (0, 0.12). To obtain a graphical
comparison of the VaR estimates, we first simulated a trajectory of size 1100 of the factor model withm = 4. A crystallized
portfolio of composition (1/m, . . . , 1/m) at time t = 1 has been considered. For the multivariate approaches we estimated
cDCC-GARCH(1,1) models, while for the univariate approaches we estimated GARCH(1,1) models. The four competing
estimators of the 5% VaRt−1 at time t = 1001 were estimated on the basis on the first 1000 simulated values y1, . . . , yt−1.
Then, VaR at time t = 1002 was estimated based on the past 1000 simulations y2, . . . , yt−1. We continued this way until
we obtained the last VaR estimations at time t = 1100. Fig. 4 shows that the estimates obtained by the Spherical, FHS
and VHS methods are very close (actually, they are not distinguishable on the figure), whereas the estimates obtained by
the naive method behave differently. This can be explained by the fact that the portfolio is crystallized but not static. In
other words, even if the portfolio is constituted of an equal quantity of the m simulated assets, the return rt is not a fixed
average of the individuals returns ykt (see Fig. 5).

To compare the methods by using formal backtests, we considered the same framework of GARCH estimations on
rolling windows of length 1000, but the methods have been backtested on a longer period of length 2000. Moreover, in
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Fig. 4. Comparison of 4 VaRs at the horizon 1 for a crystallized portfolio of m = 4 simulated assets.

Fig. 5. Time-varying composition of the return of the crystallized portfolio as function of the returns of the individual assets.

order to obtain a clearcut comparison between the naive method and the VHS method, the composition of the portfolio
has to be highly time-varying. We thus simulated portfolios whose composition alternates as follows: we take an equal
proportion of the returns of the even assets ϵ2k,t during a period of length 100, and then we switch to an equal proportion
of the odd assets ϵ2k+1,t during another period of length 100. Table 2 summarizes the results of the 4 VaR estimation
methods for m = 2, 4, 8, 100. This simulation exercise is intensive since 2000 DCC-GARCH models were estimated for
each of the two multivariate methods, and 2000 univariate GARCH(1,1) models were estimated for each of the univariate
methods. The spherical and FHS methods become rapidly too time consuming when the number m of returns increases,
because multivariate m-GARCH models have to be estimated. Interestingly, the numerical complexity of the univariate
methods does not increase much with m, so that Table 2 reports results on portfolios of m = 8 and m = 100 assets for
the univariate methods only.

In this table, the column Viol gives the relative frequency of violations (in %), while the columns LRuc, LRind and LRcc
give respectively the p-values of the unconditional coverage test that the probability of violation is equal to the nominal
5% level, the independence test that the violations are independent and the conditional coverage test of Christoffersen
(2003). Conclusions drawn from those backtests, which solely focus on the violations, are that all methods are validated
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Table 2
Backtests of the 5%-VaR estimates for the factor model. The composition of the portfolio changes every 100 observations. For the multivariate (resp.
univariate) approaches DCC (resp. GARCH(1,1)) models are estimated on 1000 observations. All statistics are computed on 2000 observations.

Viola LRucb LRindb LRccb VaRc AVd ESd Lossd DMe

m = 2 Naive 5.20 68.34 79.24 88.89 4.64 1.87 6.56 0.33 –
VHS 5.55 26.71 72.63 50.81 4.26 1.07 5.30 0.27 5.e−10
Spherical 5.30 54.19 86.71 81.87 4.28 1.10 5.49 0.27 1.e−09
FHS 5.60 22.67 90.67 47.82 4.25 1.10 5.33 0.27 3.e−09

m = 4 Naive 5.55 26.71 12.95 17.12 4.51 1.90 6.08 0.33 –
VHS 4.35 17.30 90.93 39.26 4.60 1.18 5.45 0.28 1.e−07
Spherical 5.20 68.34 5.95 15.59 4.36 1.19 5.61 0.28 2.e−08
FHS 4.30 14.15 87.19 33.50 4.60 1.19 5.55 0.28 2.e−07

m = 8 Naive 5.10 83.79 56.34 82.87 4.87 1.61 6.10 0.33 –
VHS 5.50 31.23 69.02 55.44 4.44 1.05 5.38 0.28 1.e−08

m = 100 Naive 4.90 83.69 6.93 18.8 4.53 2.16 7.65 0.34 –
VHS 5.25 61.07 81.42 85.46 4.56 1.09 5.61 0.29 6.e−09

a% of violations of the estimated 5%-VaRs.
bp-values of backtests of the violations.
cAverage VaR.
dAverage amount of violation criteria.
ep-values of DM tests that the naive method has the same loss.

on these experiments. In particular, it is interesting to notice that the naive method does not behave so poorly in terms
of backtests. It is necessary to introduce alternative statistics to differentiate the different approaches. From a portfolio’s
manager point of view, it is interesting to minimize the average VaR (denoted VaR in the table) in order to minimize
the reserves. For both regulator and manager, it is also important to minimize the amount of violation. The column AV
displays the average amount of violation, and the column ES gives the expected shortfall, that is the average loss when
the VaR is violated: for each estimator V̂aRt of the conditional VaR, let

AV =

∑n
t=1 −(rt + V̂aRt )1{rt<−V̂aRt }∑n

t=1 1{rt<−V̂aRt }
, ES =

∑n
t=1 −rt1{rt<−V̂aRt }∑n

t=1 1{rt<−V̂aRt }
.

These statistics clearly show that the naive approach is inefficient compared to its competitors. With this method, the
amount of violation tends to be higher whatever the size m of the portfolio. For these statistics AV and ES, the VHS
approach appears comparable to the multivariate methods when comparison is possible, that is when m is not too large.
Alternative comparisons are provided by introducing the loss function

Loss =
1
n

n∑
t=1

−(rt + V̂aRt )(α − 1{rt<−V̂aRt }),

also considered by Giacomini and Komunjer (2005), and Gneiting (2011) in the context of forecast evaluation. The last
column of Table 2 reports, for each of the three non-naive methods, p-values of the Diebold and Mariano (1995) test
for the null that the naive method produces the same loss against the alternative that it induces higher loss. The null
is rejected in each situation, leading to the same conclusion as before: the naive method is outperformed by its three
competitors when m is small, and by the VHS method when m is large.

4.2. Real data

We start by plotting the returns of an actual crystallized portfolio, showing the same kind of behavior as the simulated
portfolio of Fig. 2. The portfolio is obtained by equally weighting 3 stocks, ADM (Advanced Micro Devices), BFB (Brown-
Forman Corporation) and AMZ (Amazon). on the period 1997-05-15 to 2018-09-05 (5363 observations). The composition
at−1 of the portfolio is plotted in Fig. 6. It is seen that the third asset becomes preponderant at the end of the period.
The plot of the portfolio’s returns in Fig. 7 shows that the changes in the portfolio composition induce apparent non-
stationarities. Contrary to the simulated portfolio of Fig. 2, the volatility decreases when the portfolio becomes more
concentrated, which is explained by the fact the third asset is also the less volatile. Next, we will compare the univariate
methods on portfolios whose composition is strongly time varying. Then, we will consider portfolios that are regularly
rebalanced so that their compositions do not vary too much.

4.2.1. Estimating the conditional VaR of portfolios of US stocks
We now consider portfolios built from a set of m = 49 US stocks covering 2489 trading days, from January 4, 1999 to

December 31, 2008. The data have been kindly provided to us by Sébastien Laurent, and are described in Laurent et al.
(2016). The top panel of Fig. 8 displays the returns of a crystallized portfolio which was fully diversified at the beginning
of the period, i.e with composition a0 = (1/m, . . . , 1/m) at time t = 1, and for which the number of units of each asset
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Fig. 6. Time-varying composition of the crystallized portfolio based on the three US stocks.

Fig. 7. Returns of the crystallized portfolio based on the three US stocks.

µi,t = 1 is time-invariant. The bottom panel of this figure displays maxi∈{1,...,49} ai,t as function of t . This figure shows that
the composition of the portfolio is time-varying, and that the portfolio tends to become more and more concentrated. At
the beginning of the period, the return of the crystallized portfolio is an equi-weighted average of the individual returns,
but at the end of the period, one of the individual returns tends to have a prominent weight (this individual return is the
UNILEVER stock from February 20, 2003 onwards).

Given the large number of assets, we did not implement multivariate approaches to estimate the VaR of this
portfolio. Estimating a multivariate GARCH(1,1) model by QML in this setting would require inverting very large
correlation/covariance matrices at each step of the optimization algorithm. There exists multivariate approaches – either
based on constrained models or using alternatives to the full QML (e.g. the composite likelihood as in Engle et al. (2017),
or the Equation-by-Equation method of Francq and Zakoïan (2016)), or using intraday data (e.g. Boudt et al. (2017)) –
which do not fit into our semiparametric GARCH framework.

Fig. 9 displays the estimates of the 5%-VaR obtained from the Naive and VHS methods. Starting from t = 1001, the
estimates are computed from all the previous observations r1, . . . , rt−1. As can be seen from the figure, the naive and VHS
methods provide very similar results and the backtests used in the previous section are not able to distinguish them. At
first sight, this result is quite surprising, but it can be explained by the fact that the composition of the portfolio varies
relatively slowly and, even if the composition is changing, the dynamics does not change drastically because most of
the individual returns follow similar GARCH models. The interesting conclusion is that, even if the naive method is not
supported by rigorous theoretical results, it may work surprisingly well in practice.

In a second experiment, we considered a portfolio whose composition changes every week, between an equi-weighted
average of the stocks MS, F, GM and an equi-weighted average of the stocks CVX, XOM, ECX. At the beginning of the week,
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Fig. 8. Returns and maximum weight of a crystallized portfolio of 49 US stocks.

Fig. 9. Naive and VHS estimations of the 5%-VaR at horizon 1 for a portfolio of US stocks.

the portfolio is thus composed of the same amount of the three assets, then the portfolio is crystallized until the end of
the week. The two sets of stocks have been chosen because of their different dynamic behaviors. Results are displayed in
Table 3. Once again, the naive and VHS methods are not much different, but there are some discrepancies in favor of the
VHS method (as indicated by the DM test).

4.2.2. Comparing naive and VHS methods on rebalanced portfolios
In practice, portfolios are often periodically re-balanced. Intuitively, the naive and VHS approaches should behave

similarly in this situation. To verify this intuition, we now build portfolios with the m = 19 stocks that illustrate Chapter
17 of Boyd and Vandenberghe (2018). The data set covers the period from 2004-01-02 to 2013-12-31 (2517 values). We
consider a portfolio which is equally diversified at the beginning of the period (i.e. we take µi,t = µi = V0/(mpi,0) at
t = 0, corresponding to the beginning date 2004-01-02), and we re-balance the portfolio every T periods (such that
µi,t = Vt/(mpi,t ) at t = kT for all k ∈ N). If the portfolio is re-balanced at any time, i.e. T = 1, then ai,t = 1/m for
all t , and thus the naive and VHS methods coincide. To limit transaction costs, the investor can maintain the same asset
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Table 3
Backtests of estimates of the VaR at the level α obtained by univariate methods, for a portfolio of US stocks whose composition changes every week
over the period 1999–2008.

Viol LRuc LRind LRcc VaR AV ES Loss DM

α = 5% Naive 6.234 1.484 91.914 11.426 0.024 0.012 0.036 1.9e−03 –
VHS 5.782 11.812 78.518 47.234 0.024 0.010 0.035 1.7e−03 4e−04

α = 1% Naive 1.307 18.858 40.646 49.032 0.038 0.021 0.061 6e−04 –
VHS 1.207 36.968 29.420 59.235 0.036 0.016 0.057 5e−04 7e−03

Fig. 10. Maximal (in red) and minimal (in blue) value of the composition at−1 of a portfolio that is re-balanced every T = 250 days.

Fig. 11. Estimated 1%-VaR by the naive (dotted green line) and VHS (magenta line) methods.

allocation for an extended period of time. The so-called lazy portfolios or permanent portfolios are re-balanced every year
or at any time its asset allocation strays too far from its initial state. Fig. 10 shows that, when the portfolio is re-balanced
every year, the composition of the portfolio can deviate much from the fully diversified portfolio (for which ai,t = 1/m
for all i ∈ {1, . . . ,m}). This does not necessarily entail a huge difference between the VaR’s estimated by the naive and
VHS methods. Actually, for the nominal risk level α = 1%, the maximum difference between the estimated VaR has been
observed on 2008-12-19, with a naive VaR of 0.0916 and a VHS VaR of 0.0978. As illustrated by Fig. 11 the two estimated
VaR are hardly distinguishable. This is interesting because it entails that the asymptotic theory built for the VHS method
should also apply for the naive method. In other words, the naive method is not so naive if the portfolio is re-balanced
from time to time, as recommended by finance professionals.
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5. Conclusion

This paper developed a method for estimating the conditional VaR of a portfolio of asset returns, without relying
on a joint dynamic modeling of the vector of returns. For large portfolios, using optimization routines in multivariate
approaches often entails formidable numerical difficulties. By circumventing the dimensionality curse, univariate methods
provide an operational alternative.

The naive method discussed in this paper has no theoretical grounds because it implicitly, and erroneously when
the composition is time varying, relies on the stationarity of the returns process. In many cases, however, it behaves
satisfactorily as our numerical experiments revealed. For the VHS method, we developed an asymptotic theory for a
general class of dynamic models, which are not directly estimated on observations but rather on reconstituted returns. The
obtained asymptotic results allow to quantify the estimation risk that should be taken into account in risk management.
From our numerical experiments, the multivariate methods can be recommended when the size of the portfolio is small
and the estimated multivariate GARCH model is likely to be well-specified, which is in line with the existing literature, in
particular Santos et al. (2013). When the number of underlying assets is large, or when finding an appropriate multivariate
specification is difficult, the univariate methods offer a valuable alternative. The VHS method requires computing virtual
returns, which is negligible computational burden. Thus, the two univariate methods display similar numerical complexity.
However, when the naive and VHS estimators differ substantially, the former should not be considered as reliable. When
they provide similar results, the asymptotic results obtained for the VHS method could also be used to evaluate the
accuracy of the naive method.
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Appendix A. Multivariate approaches

We assume in this appendix that the vector of log-returns follows a general multivariate model of the form

yt = mt (ϑ0) + ϵt , ϵt = Σt (ϑ0)ηt , (A.1)

where (ηt ) is a sequence of independent and identically distributed (iid) Rm-valued variables with zero mean and identity
covariance matrix; ηt is independent from the yt−i for i > 0; the m×m non-singular matrix Σt (ϑ0) and the m× 1 vector
mt (ϑ0) are functions of the past values of yt which are parameterized by a d-dimensional parameter ϑ0:

mt (ϑ0) = m(yt−1, yt−2, . . . ,ϑ0), Σt (ϑ0) = Σ(yt−1, yt−2, . . . ,ϑ0). (A.2)

Multivariate approaches require specifying the first two conditional moments in (A.2) of the vector of individual returns.
While the conditional mean is generally modeled using a small-order AR process, there are plenty of GARCH-type
specifications for the conditional variance. See for instance Bauwens et al. (2006), Francq and Zakoïan (2019, Chapter
10) or Bauwens et al. (2012) for presentations of the most commonly used specifications.

In view of (A.1) and (2.2), the portfolio’s return satisfies

rt = a′

t−1mt (ϑ0) + a′

t−1Σt (ϑ0)ηt , (A.3)

from which it follows that its conditional VaR at level α is given by

VaR(α)
t−1(rt ) = −a′

t−1mt (ϑ0) + VaR(α)
t−1

(
a′

t−1Σt (ϑ0)ηt
)
. (A.4)

A.1. Conditional VaR estimation under conditional ellipticity

The VaR formula can be simplified if we assume that the errors ηt have a spherical distribution, that is, for any non-
random vector λ ∈ Rm, λ′ηt

d
= ∥λ∥η1t , where ∥ · ∥ denotes the euclidian norm on Rm, ηit denotes the ith component of ηt ,

and d
= stands for the equality in distribution. Note that assuming sphericity of the distribution of ηt amounts to assuming

ellipticity of the conditional distribution of yt satisfying (A.1)–(A.2). Under the sphericity assumption we have

VaR(α)
t−1(rt ) = −a′

t−1mt (ϑ0) +
a′

t−1Σt (ϑ0)
VaR(α) (η) , (A.5)

where VaR(α) (η) is the (marginal) VaR of η1t . Under the sphericity assumption, by (A.5) a natural strategy for estimating
the conditional VaR of a portfolio is to estimate ϑ0 by some consistent estimator ϑ̂n in a first step, to extract the residuals
and to estimate VaR(α) (η) in a second step.
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An estimator of the conditional VaR at level α accounting for the conditional ellipticity is thus

V̂aR
(α)
S,t−1(rt ) = −a′

t−1m̃t (̂ϑn) + ∥a′

t−1Σ̃t (̂ϑn)∥ξn,1−2α, (A.6)

where ξn,1−2α is the empirical (1 − 2α)-quantile of all components of the residuals η̂t = Σ̃
−1
t (̂ϑn){yt − m̃t (̂ϑn)}.6 Here

m̃t (̂ϑn) and Σ̃t (̂ϑn) denote the estimated conditional mean and variance of yt based on initial values ỹ i for i ≤ 0. Francq
and Zakoïan (2018) derived, under appropriate assumptions, the asymptotic joint distribution of ϑ̂n and ξn,1−2α .

A.2. Conditional VaR estimation without the sphericity assumption

The FHS approach (see Barone-Adesi et al. (1999), Mancini and Trojani (2011) and the references therein) does
not require any symmetry assumption. It relies on estimating the conditional quantile of a linear combination of the
components of the innovation, where the coefficients depend on both the model parameter and the past returns. Indeed,
the conditional VaR of the portfolio return is

VaR(α)
t−1(rt ) = VaR(α)

t−1

{
a′

t−1mt (ϑ0) + a′

t−1Σt (ϑ0)ηt
}
.

A natural estimator is thus

V̂aR
(α)
FHS,t−1(rt ) = −qα

({
a′

t−1m̃t (̂ϑn) + a′

t−1Σ̃t (̂ϑn )̂ηs, 1 ≤ s ≤ n
})

, (A.7)

where qα(S) denotes the α-quantile of the elements of any finite set S ⊂ R.

Appendix B. Proofs

B.1. Proof of Lemma 2.1

We have

P

(
n∑

k=1

∆k > c

)
= P(Zn > cn) = P(Zn > 0) − P(Zn ∈ (0, cn])1{cn>0} + P(Zn ∈ (cn, 0])1cn ≤ 0

with cn = anc + bn. We have P(Zn > 0) → p and, for any ε > 0, there exists cε > 0 such that limn→∞ P(Zn ∈ (0, cn]) ≤

limn→∞ P(Zn ∈ [−cε, cε]) ≤ ε. The conclusion follows. □

B.2. Proof of Lemma 3.1

We start by showing that Assumption A2 is satisfied. Let a(z) = α0z2 + β0 and let

ϵt =
√

ω0

{
1 +

∞∑
i=1

a(ut−1) . . . a(ut−i)

}1/2

ut ,

which is well defined under the condition in (i). The process (ϵt ) is strictly stationary and ergodic by A1. The second part
of A2 follows from (iv). Next, we have

σ 2
t (θ0) = σ 2

t,Tn + σ̃ 2
t,Tn , σ 2

t,Tn = ω0

{
1 +

Tn∑
k=1

k∏
i=1

a(ut−i)

}
.

Note that, under the strict stationarity condition E log a(u1) < 0, we have

σ̃ 2
t,Tn = ω0

∞∑
k=Tn+1

k∏
i=1

a(ut−i) → 0 a.s. when Tn → ∞. (B.1)

We also set ϵ2
t = ϵ2

t,Tn + ϵ̃2
t,Tn , where ϵt,Tn = utσt,Tn ∈ Ft:t−Tn . We thus have

σ 2
t,Tn =

Tn−2∑
i=0

β i
0

(
ω0 + α0ϵ

2
t−i−1,Tn−i−1

)
+ β

Tn−1
0 σ 2

t−Tn+1,1.

6 By assumption, the components of ηt have the same symmetric distribution.
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Now, we show that A3 holds true for the GARCH(1,1) model. The first and second components of Dt are bounded, and
thus can be handled easily. The last component of Dt has the form

βσ 2
t :=

1
2σ 2

t

∂σ 2
t (θ0)
∂β

= βσ 2
t,Tn + β σ̃ 2

t,Tn , βσ 2
t,Tn =

∑Tn−2
i=1 iβ i−1

0

(
ω0 + α0ϵ

2
t−i,Tn−i

)
σ 2
t,Tn

.

Note that βσ 2
t,Tn ∈ Ft−1:t−Tn and, using the inequality x/(1 + x) ≤ xs for any x ≥ 0 and any s ∈ (0, 1), we have

βσ 2
t,Tn ≤

1
(1 − β0)2

+

Tn−2∑
i=1

iβ i−1
0 α0ϵ

2
t−i,Tn−i

ω0 + β i
0α0ϵ

2
t−i,Tn−i

≤
1

(1 − β0)2
+

αs
0

β0ω
s
0

Tn−2∑
i=1

i
{
βs
0

}i
ϵ2s
t−i,Tn−i.

Therefore, under A2, for any r ≥ 1, choosing s > 0 such that 2sr ≤ s0, the Hölder inequality shows that

sup
n


βσ 2

t,Tn


r ≤

1
(1 − β0)2

+
αs
0

β0ω
s
0

ϵ2s
1


r

∞∑
i=1

i
{
βs
0

}i
< ∞,


βσ 2

t


r < ∞,

where ∥ · ∥r denotes the Lr norm. Now note that

β σ̃ 2
t,Tn =

1
2σ 2

t,Tn

∂σ 2
t (θ0)
∂β

+
1
2

∂σ 2
t (θ0)
∂β

(
1

σ 2
t (θ0)

−
1

σ 2
t,Tn

)
− βσ 2

t,Tn

=
1

2σ 2
t,Tn

Tn−2∑
i=1

iβ i−1
0

(
ω0 + α0ϵ

2
t−i,Tn−i

)
+

1
2σ 2

t,Tn

Tn−2∑
i=1

iβ i−1
0 α0(ϵ2

t−i − ϵ2
t−i,Tn−i) − βσ 2

t,Tn

+
1

2σ 2
t,Tn

∞∑
i=Tn−1

iβ i−1
0

(
ω0 + α0ϵ

2
t−i

)
+ βσ 2

t

(
1 −

σ 2
t (θ0)
σ 2
t,Tn

)

= −
σ̃ 2
t,Tn

σ 2
t,Tn

βσ 2
t +

α0
∑Tn−2

i=1 iβ i−1
0 ϵ̃2

t−i,Tn−i

2σ 2
t,Tn

+

∑
∞

i=Tn−1 iβ
i−1
0

(
ω0 + α0ϵ

2
t−i

)
2σ 2

t,Tn

. (B.2)

In view of (B.1), the first term of the right-hand side of the equality tends to zero in probability. Using Lemma 2.2 in
Francq and Zakoïan (2019), the strict stationarity condition E log a(u1) < 0 entails the existence of s ∈ (0, 1) such that
ρ := Eas(u1) < 1. We then have Eϵ̃2s

t,Tn ≤ KρTn , which entails

E

⏐⏐⏐⏐⏐
Tn−2∑
i=1

iβ i−1
0 ϵ̃2

t−i,Tn−i

⏐⏐⏐⏐⏐
s

≤ K
Tn−2∑
i=1

isβs(i−1)
0 ρTn−i

→ 0 as n → ∞.

Noting that E|Xn|
s

→ 0 for some s > 0 entails that Xn → 0 in probability, we conclude that the second term of the
right-hand side of the equality (B.2) tends to zero in probability. Let s ∈ (0, 1) such that E|ϵt |

2s < ∞. We have

E

⏐⏐⏐⏐⏐
∞∑

i=Tn−1

iβ i−1
0

(
ω0 + α0ϵ

2
t−i

)⏐⏐⏐⏐⏐
s

≤
(
ωs

0 + αs
0E|ϵ1|

2s) ∞∑
i=Tn−1

is(βs
0)

i−1
→ 0

as n → ∞. If follows that the third term of the right-hand side of the equality (B.2) tends to zero in probability. We
thus have shown that β σ̃ 2

t,Tn = op(1). It follows that βσ 2
t,Tn can be chosen as being the last component of Dt,Tn . As already

argued, the two other components are handled more easily. This shows that A3 is satisfied for any sequence Tn tending to
infinity. Turning to A4, assume that σt+1(θ1) = σt+1(θ2) a.s. for θi = (ωi, αi, βi). We thus have ω1+α1u2

t σ
2
t (θ0)+β1σ

2
t (θ1) =

ω2 + α2u2
t σ

2
t (θ0) + β2σ

2
t (θ2) a.s. Thus, if α1 ̸= α2, u2

t can be written as a variable belonging to Ft−1. This variable is in
fact degenerate and equal to 1 because E(u2

t | Ft−1) = 1, in contradiction with (ii). It follows that α1 = α2, and thus
ω1 + β1σ

2
t (θ1) = ω2 + β2σ

2
t (θ2). Proceeding in the same way, by expressing u2

t−1 as a Ft−2-measurable variable, allows
to conclude that θ1 = θ2, that is that A4 is satisfied. The other assumptions are easily verified. In particular, A7 can be
handled using (7.51) and (7.54) in Francq and Zakoïan (2019).7 □

B.3. Proof of Theorem 3.1

We start by showing the following lemma, which only requires a small part of the assumptions of Theorem 3.1.

Lemma B.1. Assume that E(u2
t | Ft−1) = 1, and that Assumptions A2, A4 and A5 hold. Then θ̂n → θ0 a.s. as n → ∞.

7 For the latter equation, examination of the proof shows that the iidness of the innovation is not used.
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Proof. Let

Qn(θ ) =
1
n

n∑
t=1

ℓt , ℓt = ℓt (θ) =
ϵ2
t

σ 2
t (θ)

+ log σ 2
t (θ).

The strong consistency of θ̂n is a consequence of the following results:

(i) lim
n→∞

sup
θ∈Θ

|Qn(θ ) − Q̃n(θ )| = 0 , a.s.

(ii) E|ℓt (θ0)| < ∞, and if θ ̸= θ0 , Eℓt (θ ) > Eℓt (θ0) ;

(iii) any θ ̸= θ0 has a neighborhood V (θ ) such that lim sup
n→∞

inf
θ∗∈V (θ )

Qn(θ∗) > Eℓt (θ0) , a.s.

To prove (i) we note that

sup
θ∈Θ

|Qn(θ ) − Q̃n(θ )| ≤ n−1
n∑

t=1

sup
θ∈Θ

{⏐⏐⏐⏐σ 2
t (θ) − σ̃ 2

t (θ)
σ 2
t (θ)σ̃ 2

t (θ)

⏐⏐⏐⏐ ϵ2
t +

⏐⏐⏐⏐log(σ 2
t (θ)

σ̃ 2
t (θ)

)⏐⏐⏐⏐}

≤
2C
ω3 n

−1
n∑

t=1

ρtϵ2
t +

2C
ω

n−1
n∑

t=1

ρt ,

where the latter inequality is deduced from A4–A5. The right-hand side goes to 0 a.s., by the Cesàro lemma and the
existence of a small-order moment for ϵt (Assumption A2). The proof of (ii) uses the identifiability assumption in A4, and
the fact that E(u2

t | Ft−1) = 1, enabling us to write

Eℓt (θ) = E
σ 2
t (θ0)
σ 2
t (θ)

+ E log σ 2
t (θ),

where the existence of the latter expectation, in R ∪ {+∞}, follows from the first part of A4. At the true value we have
E|ℓt (θ0)| < ∞ using again E|ϵ1|

s0 < ∞. The proof of (iii) uses the ergodic theorem and a standard compactness argument
(see for instance Francq and Zakoïan (2019, Proof of Theorem 7.1) for details). □

Turning to the asymptotic distribution, we establish the following lemma.

Lemma B.2. Under A1 and A3–A4, we have

1
√
n

n∑
t=1

(
(u2

t − 1)Dt
1{ut<ξα} − α

)
L
→ N (0, Sα), where Sα =

(
S11 S12

α

S21
α S22

α

)
is a positive definite matrix.

Proof. Let c0 ∈ R, c1 ∈ Rm, c = (c ′

1, c0)
′ and

xt = (u2
t − 1)c ′

1Dt + c0(1{ut<ξα} − α), xt,n = (u2
t − 1)c ′

1Dt,Tn + c0(1{ut<ξα} − α).

We will apply a central limit theorem for the mixing triangular array (xt,n). For convenience, we reproduce it below.

Theorem B.1 (Francq and Zakoïan, 2005). Let (xt,n) be a triangular array of centered real-valued random variables. For each
n ≥ 2 and h = 1, . . . , n − 1, let the strong mixing coefficients of x1,n, . . . , xn,n be defined by

αn(h) = sup
1≤t≤n−h

sup
A∈At,n,B∈Bt+h,n

|P(A ∩ B) − P(A)P(B)|,

where At,n = σ (xu,n, 1 ≤ u ≤ t) and Bt,n = σ (xu,n, t ≤ u ≤ n) and, by convention, αn(h) = 1/4 for h ≤ 0, αn(h) = 0 for
h ≥ n. Let Sn =

∑n
t=1 xt,n. Under the following assumptions

(1) supn≥1 sup1≤t≤n ∥xt,n∥2+ν∗ < ∞ for some ν∗
∈ (0, ∞],

(2) limn→∞ n−1VarSn = σ 2 > 0,
(3) there exists a sequence of integers (Tn) such that Tn = O(nκ ) for some κ ∈ [0, ν∗/{4(1+ ν∗)}) and a sequence {α(h)}h≥1

such that

αn(h) ≤ α(h − Tn), for all h > Tn, (B.3)

∞∑
h=1

hr∗αν∗/(2+ν∗)(h) < ∞ for some r∗ >
2κ(1 + ν∗)

ν∗ − 2κ(1 + ν∗)
, (B.4)

we have n−1/2Sn
L
→ N (0, σ 2).
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Let ∥·∥ denote any norm on Rd and, for any random vector X ∈ Rd, let ∥X∥p = E(∥X∥
p)1/p for p ≥ 1. Let ν∗

= (ν−ϵ)/2
where ν and ϵ are defined in A1. By A1 and A3, we have

sup
n

∥u2
t Dt,Tn∥

2+ν∗

2+ν∗ ≤ ∥u4+2ν∗

t ∥p

sup
n

∥Dt,Tn∥
2+ν∗


q
< ∞

provided that p = q/(q− 1) satisfies 1 < p ≤ (4+ ν)/(4+ ν − ϵ). Therefore (1) holds. Now, letting D̃t,Tn = Dt − Dt,Tn , we
note that ∥D̃t,Tn∥

r
→ 0 in probability by A3, and the sequence ∥D̃t,Tn∥

r is uniformly integrable because

sup
n

∥D̃t,Tn∥r ≤ sup
n

∥Dt,Tn∥r + ∥Dt∥r < ∞.

From Theorem 3.5 in Billingsley (1999) it follows that E∥D̃t,Tn∥
r
→ 0 as n → ∞, for any r ≥ 1. We thus have

Var
1

√
n

n∑
t=1

(
xt − xt,n

)
= E

[
(u2

t − 1)2{c ′

1D̃t,Tn}
2]

≤ E
[
(u2

t − 1)2(1+
ν
4 )
] 4

4+ν
E
[
(c ′

1D̃t,Tn )
2(1+ 4

ν )
] ν

4+ν
→ 0 (B.5)

as n → ∞. Therefore, for c ̸= 0,

lim
n→∞

n−1Var
n∑

t=1

xt,n = lim
n→∞

n−1Var
n∑

t=1

xt → σ 2
= c ′Sαc > 0

provided that Sα is positive definite. To show the latter, let x0 ∈ R, x1 ∈ Rm, x = (x′

1, x0)
′ such that x′Sαx = 0. We

then have (u2
t − 1)x′

1Dt + x0(1{ut<ξα} − α) = 0 a.s. Thus, conditional on Ft−1, ut takes at most three different values when
x ̸= 0, in contradiction with the existence of the density ft−1. Thus (2) is satisfied. By A3, xt,n ∈ Ft:t−Tn . Thus, Sα is positive
definite and (B.3) is satisfied, where the sequence α(h) is defined in A1. The conditions of (3) are also satisfied by A1. It
follows that

1
√
n

n∑
t=1

xt,n
L
→ N (0, σ 2).

The conclusion then follows from (B.5) and the Cramér–Wold device. □

Now we turn to the proof of Theorem 3.1. Let ut (θ) = ϵt/σt (θ) and ût = ϵt/σ̃t (θ̂n). Note that, by A4 and A5, for n large
enough⏐⏐⏐ût − ut (θ̂n)

⏐⏐⏐ =

⏐⏐⏐⏐⏐ϵt σt (θ̂n) − σ̃t (θ̂n)

σ̃t (θ̂n)σt (θ̂n)

⏐⏐⏐⏐⏐ ≤
C
ω

ρtut sup
θ∈V (θ0)

⏐⏐⏐⏐σt (θ0)
σt (θ)

⏐⏐⏐⏐ . (B.6)

A Taylor expansion around θ0 and A4, A5 yields

ût = ut − utD′

t (θ̂n − θ0) + rn,t

with

rn,t =
1
2
(θ̂n − θ0)′

∂2ut (θn,t )
∂θ∂θ′

(θ̂n − θ0) + ût − ut (θ̂n),

where θn,t is between θ̂n and θ0. Following the approach of Knight (1998) and Koenker and Xiao (2006) (see also Francq
and Zakoïan (2015)), we then obtain

√
n(ξn,α − ξα) = argmin

z∈R
Qn(z), where Qn(z) = zXn + In(z) + Jn(z) + Kn(z),

with

Xn =
1

√
n

n∑
t=1

(1{ut<ξα} − α),

In(z) =

n∑
t=1

∫ z/
√
n

0
(1{ut≤ξα+s} − 1{ut<ξα})ds,

Jn(z) =

n∑
t=1

∫ Rt,n/
√
n

0

(
1{ut−ξα−z/

√
n≤u} − 1{ut−ξα−z/

√
n<0}

)
du,
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Kn(z) =

n∑
t=1

Rt,n
√
n
1∗

{ut−ξα∈(0,z/
√
n)},

1∗

{X∈(a,b)} = 1{X<b} −1{X<a} for any real numbers a, b and any real random variable X , and Rt,n = utD′
t
√
n(θ̂n − θ0)−

√
nrn,t .

We will show that

Qn(z) =
z2

2
Ef0(ξα) + z{Xn + ξαΨ

′

α

√
n(θ̂n − θ0)} + OP (1). (B.7)

Noting that

Kn(z) =

(
1

√
n

n∑
t=1

ut1∗

{ut−ξα∈(0,z/
√
n)}D

′

t

)
√
n(θ̂n − θ0)

−
√
n(θ̂n − θ0)′

1
2n

n∑
t=1

∂2ut (θn,t )
∂θ∂θ′

1∗

{ut−ξα∈(0,z/
√
n)}

√
n(θ̂n − θ0)

−

n∑
t=1

{
ût − ut (θ̂n)

}
1∗

{ut−ξα∈(0,z/
√
n)}

=: Kn1(z) + Kn2(z) + Kn3(z),

the proof of (B.7) will be divided in the following steps.

(i) Kni(z) → 0 in probability as n → ∞, for i = 2, 3.
(ii) Kn1(z) = zξαΨ

′
α

√
n(θ̂n − θ0) + oP (1) in probability as n → ∞.

(iii) Jn(z) does not depend on z asymptotically.
(iv) In(z) →

z2
2 Ef0(ξα) in probability as n → ∞.

To prove (i) for i = 2, note that

∂2ut (θ)
∂θ∂θ′

= −ut
σt (θ0)
σt (θ)

1
σt (θ)

∂2σt (θ)
∂θ∂θ′

+ 2ut
σt (θ0)
σt (θ)

1
σ 2
t (θ)

∂σt (θ)
∂θ

∂σt (θ)
∂θ′

. (B.8)

Let 0 < δ < 2+ν
6+ν

. By the Cauchy–Schwartz inequality we have, for p, q, r > 0 such that 1
p +

1
q +

1
r = 1,

E sup
θ∈V (θ0)

ut
σt (θ0)
σt (θ)

1
σt (θ)

∂2σt (θ)
∂θ∂θ′

1+δ

≤ {E|ut |
p(1+δ)

}
1/p

(
E sup

θ∈V (θ0)

⏐⏐⏐⏐σt (θ0)
σt (θ)

⏐⏐⏐⏐q(1+δ)
)1/q (

E sup
θ∈V (θ0)

 1
σt (θ)

∂2σt (θ)
∂θ∂θ′

r(1+δ)
)1/r

. (B.9)

In view of A1 and A7, the first and third expectation in the right-hand side are finite if we choose p =
4+ν
1+δ

and r =
2

1+δ
.

We then have q(1+ δ) =
2(4+ν)(1+δ)
2+ν−δ(6+ν) . The latter term increases, when δ varies in (0, 2+ν

6+ν
), from 2(4+ν)

2+ν
to infinity. It is thus

possible to choose δ small enough such that q(1 + δ) <
2(4+ν)(1+τ )

2+ν
. For such δ, by A7, the second expectation and finally

the right-hand side of (B.9) are finite. The second summand in the right-hand side of (B.8) can be handled similarly. Thus
we have

E sup
θ∈V (θ0)

∂2ut (θ)
∂θ∂θ′

1+δ

< ∞. (B.10)

By the Hölder inequality, for θn,t ∈ V (θ0),1n
n∑

t=1

∂2ut (θn,t )
∂θ∂θ′

1∗

{ut−ξα∈(0,z/
√
n)}


≤

{
1
n

n∑
t=1

sup
θ∈V (θ0)

∂2ut (θ)
∂θ∂θ′

1+δ
}1/(1+δ) {

1
n

n∑
t=1

1∗

{ut−ξα∈(0,z/
√
n)}

}δ/(1+δ)

.

By (B.10) and the ergodic theorem, the limit of the first term of the latter product is almost surely finite. Letting
νt,n = 1∗

{ut−ξα∈(0,z/
√
n)} and νt,n = νt,n − E(νt,n | Ft−1), we have

1
√
n

n∑
t=1

1∗

{ut−ξα∈(0,z/
√
n)} =

1
√
n

n∑
t=1

νt,n +
1

√
n

n∑
t=1

E(νt,n | Ft−1).
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First note that

E(νt,n | Ft−1) =

∫ ξα+z/
√
n

ξα

ft−1(x)dx =
z

√
n
ft−1(ξα) +

kt,n
√
n

where⏐⏐kt,n⏐⏐ =
√
n

⏐⏐⏐⏐⏐
∫ ξα+z/

√
n

ξα

{ft−1(x) − ft−1(ξα)} dx

⏐⏐⏐⏐⏐ ≤ Kt−1
z2
√
n
,

by A1. Now, note that we have E 1
√
n

∑n
t=1 νt,n = 0 and

Var

(
1

√
n

n∑
t=1

νt,n

)
= Eν2

1,n =

∫ ξα+z/
√
n

ξα

E
{
1 −

z
√
n
f0(ξα) −

kt,n
√
n

}2

f0(x)dx → 0,

using again A1. Moreover, almost surely

1
√
n

n∑
t=1

E(νt,n | Ft−1) =
1

√
n

n∑
t=1

∫ ξα+z/
√
n

ξα

ft−1(x)dx → zEft−1(ξα).

We thus have shown that
∑n

t=1 1
∗

{ut−ξα∈(0,z/
√
n)} = OP (

√
n). Thus, (i) for i = 2 is established. By the same arguments and

(B.6), it can be shown that (i) for i = 3 holds.
Turning to (ii), we have

E
(
ut1∗

{ut−ξα∈(0,z/
√
n)}D

′

t | Ft−1

)
=

∫ ξα+z/
√
n

ξα

xft−1(x)dxD′

t

=

∫ ξα+z/
√
n

ξα

xft−1(ξα)dxD′

t +

∫ ξα+z/
√
n

ξα

x{ft−1(x) − ft−1(ξα)}dxD′

t

= ξα ft−1(ξα)
z

√
n
D′

t +
k∗
t,n

√
n
D′

t

with ⏐⏐k∗

t,n

⏐⏐ =
√
n

⏐⏐⏐⏐⏐ft−1(ξα)
z2

2n
+

∫ ξα+z/
√
n

ξα

x {ft−1(x) − ft−1(ξα)} dx

⏐⏐⏐⏐⏐
≤

z2
√
n

{
2Kt−1ξα +

ft−1(ξα)
2

+
|z|
√
n
Kt−1

}
.

Denoting by dt a generic element of Dt , we also have

EE
[{

ut1∗

{ut−ξα∈(0,z/
√
n)}dt − E

(
ut1∗

{ut−ξα∈(0,z/
√
n)}dt | Ft−1

)}2
| Ft−1

]
=

∫ ξα+z/
√
n

ξα

E
(
x − ξα ft−1(ξα)

z
√
n

+
k∗
t,n

√
n

)2

d2t ft−1(x)dx = o(1), (B.11)

as n → ∞. To show that the expectation inside the latter integral is finite, we used in particular the fact that

E sup
x∈[ξα ,ξα+z/

√
n]
d2t f

2
t−1(ξα)ft−1(x) ≤

√
Ed8t E sup

ξ∈V (ξα )
f 4t−1(ξ ) < ∞

for sufficiently large n under A1 and A7. Hence, (ii) is established.
To prove (iii), write Jn(z) =

∑n
t=1 Jn,t . Write rn,t = rn,t (θ̂n), Rn,t = Rn,t (θ̂n), Jn,t = Jn,t (θ̂n) and Jn(z) = Jn(z, θ̂n). Let (θn) be

a deterministic sequence such that
√
n(θn − θ0) = O(1). By the change of variable u = utv, we have

E
(
Jn,t (θn) | Ft−1

)
=

∫ D′
t (θn−θ0)+oP (n−1/2)

0
E
(
ut1∗

{ut∈(ξα+z/
√
n,(ξα+z/

√
n)(1−v)−1)} | Ft−1

)
dv

=
ξ 2
α

2
ft−1(ξα)(θn − θ0)′DtD′

t (θn − θ0) + oP (n−1).

By the arguments used to show (B.11), we can show that

E
[
Jn,t (θn) − E

{
Jn,t (θn) | Ft−1

}]2
= o(n−1).



C. Francq and J.-M. Zakoïan / Journal of Econometrics 217 (2020) 356–380 379

Table 4
Design of Monte Carlo experiments.

ω′

0 (vecA0)′ diagB0 S0(1, 2) α β Pη

A (10−6, 4 × 10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0.7 0.04 0.95 N (0, I2)
B (10−6, 4 × 10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0.7 0.04 0.95 St7
C (10−6, 4 × 10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0 0 0 N (0, I2)
D (10−6, 4 × 10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0 0 0 St7
E (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0.7 0.04 0.95 N (0, I2)
F (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0.7 0.04 0.95 St7
G (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0 0 0 N (0, I2)
H (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0 0 0 St7

Designs A∗-H∗ are the same as Designs A–H, except that Pη follows an AEPD.

We thus have

Jn(z, θn) =
ξ 2
α

2
√
n(θn − θ0)′E{f0(ξα)D1D′

1}
√
n(θn − θ0) + o(1), a.s.

It follows that Jn(z, θn) does not depend of z asymptotically. Since this is true for any sequence such that
√
n(θn − θ0) =

O(1), this is also true almost surely for Jn(z) and (iii) is established.
By the previously used arguments, it can be shown that (iv) holds which completes the proof of (B.7). By Lemma 2.2

in Davis et al. (1992) and convexity arguments, we can conclude that

√
n(ξα − ξn,α) =

ξα

Ef0(ξα)
Ψ′

α

√
n(θ̂n − θ0) +

1
Ef0(ξα)

1
√
n

n∑
t=1

(1{ut<ξα} − α) + oP (1).

We have the following Taylor expansion

√
n(θ̂n − θ0) =

−J−1

2
√
n

n∑
t=1

(1 − u2
t )Dt + oP (1).

By the CLT for martingale differences we get the announced result, noting that

Covas

(
√
n(θ̂n − θ0),

1
√
n

n∑
t=1

(1{ut<ξα} − α)

)
=

1
2
J−1S12

α ,

which entails

Varas{
√
n(ξn,α − ξα)} = ζα, Covas

(√
n(θ̂n − θ0),

√
n(ξα − ξn,α)

)
= Λα. □

Appendix C. Designs for the cDCC-GARCH model

The cDCC-GARCH(1,1) model is defined by Σt = DtR
1/2
t where the diagonal matrix Dt = diag(σ1t , . . . , σmt ) is assumed

to satisfy the GARCH(1,1) equation

ht = ω0 + A0yt−1
+ B0ht−1 (C.1)

where ht =
(
σ 2
1t , . . . , σ

2
mt

)′, y
t
=
(
ϵ2
1t , . . . , ϵ

2
mt

)′, A0 and B0 are m × m matrices with positive coefficients, ω0 is a vector

of strictly positive coefficients, and B0 is assumed to be diagonal,

Rt = Q ∗−1/2
t Q tQ

∗−1/2
t , Q t = (1 − α0 − β0)S0 + α0Q

∗1/2
t−1 η∗

t−1η
∗
′

t−1Q
∗1/2
t−1 + β0Q t−1,

where α0, β0 ≥ 0, α0+β0 < 1, S0 is a correlation matrix, Q ∗

t is the diagonal matrix with the same diagonal elements as Q t ,
and η∗

t = D−1
t yt . The unknown parameter θ0 includes the volatility parameters ω0, A0 and diag(B0), and the conditional

correlation parameters α0, β0 and the sub-diagonal elements of S0.
The parameters used in the Monte-Carlo experiments of Section 4.1.2 are displayed in Table 4. In Designs A–D the first

return is less volatile and less conditionally heteroscedastic than the second return, whereas the two returns have the same
dynamic in Designs E–H. Two sets of designs are also distinguished by strong dynamic correlations (α0 +β0 = 0.99) with
a strong correlation between the returns (S0(1, 2) = 0.7) or constant conditional correlations with null cross-correlation
(α0 = β0 = 0 and S0(1, 2) = 0). Finally, the designs are distinguished by the distribution of the innovations, which
can be the standard normal or the Student distribution with 7 degrees of freedom St7 (standardized to obtain unit
variance). For generating non spherical distributions, we simulated vectors ηt with independent components, distributed
according to the Asymmetric Exponential Power Distribution (AEPD) introduced by Zhu and Zinde-Walsh (2009). This
class of distributions allows for skewness with different decay rates of density in the left and right tails. This led to the
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new Designs A∗-H∗, in which the N (0, I2) is replaced by the AEPD with parameters α = 0.4, p1 = 1.182 and p2 = 1.802
(which are the values estimated by Zhu and Zinde-Walsh on the S&P500), and the Student distribution St7 is replaced by
the AEPD with parameters α = 0.5, p1 = 1 and p2 = 2 (which gives a strongly asymmetric density). The AEPD densities
have also been standardized to obtain zero mean and unit variance.
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