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Abstract

Financial institutions are recognizing the importance of physical
climate-related risks and are expected to disclose the presence of such
risks in their portfolios. The assessment of physical risks is based on
climate data and in particular with the advent of climate change, it will
increasingly be based on the forward looking climate scenarios. Most
financial actors, especially in the banking sector, presently lack the
knowledge and tools required to access and use the climate datasets.
The purpose of this document is to review the main sources of climate
data, to provide an access point to this field for finance professionals.

A word of caution

The objective of this report is to give a brief overview of the type of climate
data that may be used for physical climate risk assessment. All data sources
mentioned here are prone to errors due to measuring devices precision, resolu-
tion, assumptions, etc. For a proper use of these data, we highly recommend
interacting with scientists who have produced, or worked with, the data.
Moreover, the degree of uncertainty associated to future climate, especially
in high CO2 emission scenarios is such that precise evaluation of long-term
climate-related risks is impossible, and one can at best hope to identify the
most severely affected assets and the order of magnitude of impacts.



1 Introduction

According to the recent report by Hubert, Evain, and Nicol 2018 financial
actors currently lack tools to assess how physical climate events could affect
their assets, yet they are increasingly expected to disclose climate risk in
their portfolios, in accordance with the recommendations of the Task Force
on Climate-related Financial Disclosures (TCFD).

Historically, risk assessment has relied mainly on some measure of dam-
ages, rather than on the climatic origin of the damage itself. As our exposure
to various kinds of risks increases and since climate change is expected to in-
duce changes in the physical climate risk in the world (Stocker et al. [2013),
physical climate risk assessments will increasingly need to rely on climate
data.

The focus of this report is to give a brief overview of the climate datasets
that may be useful for physical climate risk assessment studies. Economic,
sociological and anthropological data on the assets and populations of inter-
est, as well as the risk assessment methodology is not discussed.

After a quick primer on physical risk analysis in the next session, we in-
troduce general guidelines to help select a dataset in Section [3] In Section [4]
the main types of climate data-sources are presented. Then, Section || in-
troduces downscaling, an often unavoidable, yet sensitive, step to translate
climate data into physical risk. Finally, Section [0 warns about model biases
and uncertainty. A fully worked-out example related to heat waves in the
Paris area is provided in Section [7] Section gives a few links to web
pages that may prove useful in finding an appropriate dataset. A glossary
of main climate-related terms is provided in the Appendix for reader’s con-
venience. Additional references and data sources are given throughout the
text.

2 A primer on physical risk analysis

Physical climate risks are the risks of destruction of assets and / or dis-
ruption of operations, trade routes, supply chains and markets by weather
events related to climate change and climate variability. One may distinguish
chronic climate risks related to slowly evolving phenomena, like sea-level rise,
temperature rise, changing precipitation patterns etc., and the acute climate
risks related to extreme weather phenomena (floods, extreme drought, heat-



waves, wildfires, hurricanes), whose frequency and severity may increase with
the onset of climate change.
The physical climate risk is a combination of three factors:

e The climate hazard: specific weather pattern or event whose frequency
or severity may change;

e The exposure: presence of an asset or a system which may be affected
by the climate hazard;

e The vulnerability: extent to which the asset or system may suffer from
exposure to the climate hazard.

Climate data is necessary to evaluate the first factor, that is, the type, fre-
quency and severity of expected climate hazards. Evaluating the two other
factors requires access to asset level data: the geographical position and the
specific characteristic of exposed assets or systems. Such data is not discussed
in this report.

The evaluation of physical risks typically starts with the evaluation of
climate hazards expected in the geographical area of interest. The next
step is to identify the potential impact of these hazards on the concrete
economic objects of interest: assets (factories, infrastructure, agriculture),
transport links, supply links, markets, economic environment etc. These are
then translated into estimates of balance sheets of specific companies and
then possibly into the value of financial assets such as stocks and bonds.

The characterization of climate exposures requires different scales of cli-
mate information, from global to local level. Climate models provide a res-
olution of about 100km; they can be downscaled to lower resolutions either
dynamically or statistically. Regional information on non-climatic compo-
nents (relief etc.) should also be used.

Finally, one needs to keep in mind that there are large uncertainties both
about the local response of the earth system to the radiative forcing associ-
ated with increased concentrations of greenhouse gases (GHGs) and about
the capacity of the economic system to mitigate and adapt to changing cli-
mate. Internal variability of the climate and inter-model uncertainty are
dominant in the short-term, while factors such as the level of GHG emissions
are dominant at longer time scales.



3 Choosing a dataset

Recognizing that no dataset is perfect and that risk estimates should always
be taken with care, several characteristics can guide the choice of a dataset:
the period covered, whether historic or future; the spatial coverage; the pres-
ence of biases; the spatio-temporal scale of interest; the climate variable; the
type of hazard (chronic or acute).

Past data vs. forward looking data Assessing a risk based on past
data relies on the assumption that the system may be considered statistically
stationary on time scales relevant for the study and that the available data
allows one to sufficiently sample the underlying physical phenomena (in terms
of frequency, duration and quality).

Considering that the state of the climate system varies on a continuous
range of time scales, the statistical stationarity assumption may be infringed
due to (i) low-frequency variability — variability on time scales longer that
than the length of the time series from which risk is assessed, and sufficiently
large (e.g. in terms of variance) to impact the risk — (ii) climate change —
associated with changes in the forcing of the climate system, in particular,
anthropogenic climate forcing through GHG emissions, land-use change, etc.

The climate change effects become material for horizons starting from 20—
30 years ahead, but climate variability may manifest itself at shorter horizons
(5-10 years).

Climate models vs. integrated assessment Climate models produce
projections of future climate corresponding to specific scenarios of future
economic activity (CO2 emissions, pollutants, land use etc.). These scenar-
ios are created with economic reasoning, however the feedbacks of the climate
system onto the economic system (such as the increase in mitigation actions
after the widespread adverse consequences of climate change start to be felt)
are not modelled. By contrast, integrated assessment models aim to describe
jointly the evolution of the climate system and the economic system, some-
times with two-way feedbacks. Unfortunately, most integrated assessment
models to date only contain a very basic climate module which may not even
be based on the equations of physics, and therefore are not realistic enough to
be used for physical risk analysis. These models are therefore not considered
in this report, which focuses on climate models/data sets.



The Climate Data Guidd'|provides a starting point to get a quick overview
of available climate datasets and their characteristics. It is not, however,
exhaustive.

4 Selected climate data

In this section, we describe main types of climate data that may be used
for risk assessment. We have ordered them by increasing dependence on
modeling. We also focus on the following non-exhaustive list of key climate
variables related to hazards: temperature, drought, precipitation, sea level
and winds.

4.1 Observations

Observations may be used to assess past climate conditions and relate them
to historical damages. Moreover, if the environmental sub-system of interest
may be considered statistically stationary, observations may also be used to
assess future risks.

Observational data being upstream of the modeling chain, they offer the
advantage over reanalyses and projections to be less dependent on model
assumptions and errors. In situ observations, such as from weather stations,
tend to be as close as possible to the object studied, although observational
devices need to be calibrated and never give a perfect representation of the
measured variables. Teledetection from the ground or from space via satel-
lites tend to offer a greater spatial (vertical and/or horizontal) coverage.
However, they also tend to require more data processing and calibration
than in situ observations.

Both in situ and teledetected data may be further processed to facilitate
their use. For instance, NOAA’s MLOST, NASA’s GISTEMP, and the UK’s
HadCRUT datasetsE] provide a compilation of in situ observations on a reg-
ular grid. One should keep in mind that the strategy used to compile and
interpolate the data impacts its quality.

Thttps://climatedataguide.ucar.edu/

2 National Center for Atmospheric Research Staff (Eds). Last modified 25 Mar
2014. "The Climate Data Guide: Global Temperature Data Sets: Overview & Com-
parison Table.” Retrieved from https://climatedataguide.ucar.edu/climate-data/
global-temperature-data-sets—-overview-comparison-table.


https://climatedataguide.ucar.edu/climate-data/global-temperature-data-sets-overview-comparison-table.
https://climatedataguide.ucar.edu/climate-data/global-temperature-data-sets-overview-comparison-table.

In any case, the representativity of the data should always be questioned.
For instance, wind observations from a weather station on grass land may
not be representative of the wind conditions over a nearby forest. On the
other hand, the wind averaged over a 100km large grid box may not be
representative of the wind conditions at a particular location within the box
if the wind conditions vary greatly within this box.

4.2 Reanalyses
4.2.1 Motivation

Purely observational datasets are limited by their spatial (horizontal and
vertical) and temporal coverage, and by the number of observed variables.
This is particularly true in sparsely populated, economically little developed
regions. On the other hand, while numerical weather predictions give a
complete description of the atmosphere, they diverge from the future state
of the climate system within a few days, due to combined observational errors
and irreducible chaotic dynamics, and to model errors.

To alleviate this issue, one approach could be to interpolate variables of
interest. Whatever the interpolation method used, there is no reason for
the interpolated data to represent well the state of the climate system. In
particular, the interpolated state may not be consistent with the physical laws
governing the climate system. For instance, the important role of topography
or of land-ocean contrasts may be taken into account.

Another approach that has proved particularly efficient for numerical
weather prediction and for climate studies is to produce analyses by assimilat-
ing observational data into simulations. In brief, given present observations,
data assimilation seeks to modify the past state of a climate model simula-
tion in order for the present climate state predicted by model integration to
best reproduce observations.

Data assimilation can thus be seen as a way to seamlessly interpolate
observational data that is consistent with physical equations as encoded in
a climate model. Yet, due to the sparsity of observations and to the strong
dependence of analyses on model assumptions, data assimilation is better
seen as a methodology to constrain model simulations with observations.

As a climate model, or a data assimilation method, is improved and as
more observations become available, past analyses become deprecated. For
that reason, new analyses are produced over the past record with the new



version of the climate model and with the integration of new observational
datasets. The resulting dataset is thus called a reanalysis. Another advantage
of reanalysis datasets is that they provide a number of variables represented
in, or diagnosed from, the model that may be difficult to observe.

The quality of a reanalysis strongly depends on the density and quality of
observations injected in the data assimilation system. The sparser the obser-
vations at a given location, the less constrained is the model used to produce
the reanalysis. This means that the data is more prone to model errors and
more chaotic. This last point deserves attention. Indeed, risk assessment
may require climate data that is synchronized with observed damages. How-
ever, integrating sparse observations in a reanalysis tends to constrain large
scale dynamics only. This means that, while the statistical properties of
small-scale processes may be well resolved by a reanalysis, chaotic dynamics
may prevent considering the state of the reanalysis at a particular moment
to be representative of the state of the climate system at that moment and
at these scales.

4.2.2 Available reanalyses

The reanalyses.org project provides an overview of most available reanal-
yses. Atmospheric reanalyses may be divided into lower-resolution global
reanalyses and higher-resolution regional reanalyses. State-of-the-art global
reanalyses include ECMWE’s ERA5 (Copernicus Climate Change Service
(C3S) [2017), NCEP’s CFSR (Saha et al. 2010), NASA’s MERRA-2 (Gelaro
et al. 2017)) and JMA’s JRA-55 (Kobayashi et al. 2015)). A detailed compar-
ison of the design and performance of these reanalyses is given by Fujiwara
et al. 2017 and (Long et al. 2017). See also Buizza et al. 2005 and Wang
et al. 2011)

Let us also mention reanalyses for the entire 20th century, such as ECMWE’s
ERA-20C (Poli et al. 2013)), although the latter should be used with great
care, since the observational constraints weaken as one goes further back in
time (this is particularly true before the early 80s, the beginning of the satel-
lite era). As an example of regional reanalysis, let us mention the COSMO
reanalyses over Europe (Bollmeyer et al. 2015; Wahl et al. [2017)). Such re-
gional reanalyses may improve the representation of small scales — which
may in turn impact large scales — relevant for impact studies.


https://reanalyses.org/

4.3 21st century simulations
4.3.1 Motivation

Observations and reanalyses only provide information on past climate con-
ditions. Due to the chaotic nature of the climate system, the exact future
states of the climate may not be predicted. Much can be said, however, about
the future evolution of statistics of the climate system, and, in particular,
about physical climate risk. Due to the impact of low-frequency variability
and changes in the forcing due to anthropogenic climate change, statistics
of some key climate variables have changed and are expected to change fur-
ther (Taylor, Stouffer, and Meehl 2012)). This is particularly true regarding
surface temperature and sea level.

While low-frequency variability and anthropogenic climate change are
both sources of non-stationarity, the two do not have the same implications,
as far as risk assessment is concerned. The long term — say over a period of
several decades — response of the statistics of the climate system, is mainly
constrained by changes in the radiative forcing associated with increasing
greenhouse gases. Simulating this response thus depends first on the socio-
economic scenario followed by current and future emitting countries, rather
than on the initial state of the climate system. Such simulations are referred
to as projections. On the other hand, decadal predictions is an emerging field
that attempts to predict the slow evolution of the climate system associated
with low-frequency variability. In this case, information about the initial
state of the climate system is used, although most of it is lost. Whether this
information is useful to impact studies is still being investigated and is not
further discussed in this report.

4.3.2 Projections and scenarios

Global 21st century projections are structured by the the WCRP Coupledf]
Model Intercomparison Project (CMIP). CMIP’s 5th phase (Taylor, Stouffer,
and Meehl [2012) contributed to IPCC’s 5th Assessment Report (AR5), while
CMIP’s 6th phase (Eyring et al. 2016) is contributing to IPCC’s 6th Assess-

3 While weather models tend to represent dynamically the atmosphere only, the long-
term evolution of the climate system strongly depends on the interaction of the atmosphere
with other components of the Earth system. Thus, climate projections rely on general
circulation models coupling the atmosphere with oceans, sea ice, land surfaces, bio-geo-
chemistry, etc.



ment Report (ARG). As the resolution of models increases, together with the
number of processes represented, projections are expected to improve from
one phase to the next. As more data becomes available, processing this data
for impact studies may, however, prove challenging.

The main source of uncertainty in projections is the scenario used to force
the models. Since the 5th phase of CMIP, Radiative Concentration Path-
ways (RCPs) are used to impose changing greenhouse gases concentrations
in climate models. It is these changing concentrations that are responsible
for changes in the radiative forcing eventually resulting in global warming.
In parallel, different socio-economic scenarios leading to a particular RCP
are developed by economists and social scientists.

In addition to scenario-related uncertainties, model errors as well as
spread due to intrinsic variability also impact the projections. Since all mod-
els have errors and since projections are not constrained by observations, it is
important to (i) be aware of model biases and (ii) use multi-model ensembles.
Regarding this last point, it is indeed known that aggregating information
from several models allows one to improve projection skills compared to that
of a particular model. Moreover, multi-model ensembles allow one to par-
tially estimate model errors and the spread due to intrinsic variability.

CMIP data may be found on the ESGF data portal.

4.3.3 Regional projections

Computational resources limit the resolution of global climate projections.
For these reasons, global projections may not be suited for risk assessment.
This is why Regional Climate Models (RCMs) are sometimes used. The
latter resolve a limited area, allowing to increase the resolution model and
the number of resolved processes, for the same computational resource. To
produce regional projections, RCMs are forced at their boundarieq!] by pro-
jections from global models.

Just as the CMIP project for global projections, the CORDEX project
organizes regional climate projection efforts. It defines standard domains over
multiple regions as well as standard variables and entry points. Evaluation
of models participating in the CORDEX project is provided by the RCMES|

4Note that the boundary of the domain of RCMs may be source of spurious instabilities.
Modelers attempt to design RCMs so as to dump these instabilities, but some may persist
and lead to spurious results in impact studies.


https://esgf-node.llnl.gov/projects/cmip6/
https://rcmes.jpl.nasa.gov/content/cordex-evaluation

For more information on evaluation and decision support, see Whitehall et al.
2012l
CORDEX data may be found on the ESGF data portal.

4.4 Indices

Some hazards may not be directly characterized by a particular climate vari-
able. For instance the severity of a drought depends, in particular, on pre-
cipitation, temperature and on soil parameters and variables. One option is
to define an index translating and/or aggregating information into a hazard
intensity.

In the case of droughts, the Standardized Precipitation Index (SPI) quan-
tifies the number of standard deviations by which the observed anomaly
in precipitation deviates from the long-term mean. The Standardized Pre-
cipitation Evapotranspiration Indexr (SPEI) extends the SPI to take into
account potential evapotranspiration in order to capture the main impact
of increased temperatures on water demand’] Yet another index, the self-
calibrating Palmer Drought Severity Indez (sc-PDSI) is also sometimes used.
The relevance of a particular index depends on the hazard, geographical lo-
cation, local environmental conditions and index design.

Last, [climdex.org collects a number of indices of extreme events com-
puted from different global datasets. While such tools can facilitate physical
climate risk assessment, care should however be taken to evaluate the local
representativity of global indices.

5 Dynamical and statistical downscaling

The objects of risk assessment, and of impact studies in general, tend to
depend on climatic conditions at relatively small scale, that is, the scale of
a field, a city, a plant, a building, a river, and so on. On the other hand,
global projections and reanalyses, with a resolution of about a degree or half
a degree, tend to properly resolve climatic variations around a few degrees
(i.e. about 110 km at the equator, 60 km at a latitude of 45°). To pass from

® Vicente-Serrano, Sergio M. & National Center for Atmospheric Research Staff (Eds).
Last modified 18 Jul 2015. ”The Climate Data Guide: Standardized Precipitation Evap-
otranspiration Index (SPEI).” Retrieved from https://climatedataguide.ucar.edu/
climate-data/standardized-precipitation-evapotranspiration-index-spei,
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the scale resolved by such global models to the scale of interest for impact
studies several methodologies, known as downscaling are often used. These
methodologies all rely on the addition of small-scale information in some
way or another. Moreover, some approaches attempt to downscale climatic
information into a small scale climate variable or index, while other directly
downscale climatic information into some measure of impact or damage.

Downscaling may be divided in two broad categories: dynamical and
statistical downscaling (for an introduction to the topic, see Benestad [2016)).
Dynamical downscaling relies on the resolution of earth science equations at
small scales, via the integration of a regional, or limited-area, climate model.
This the case of the COSMO reanalysis and of the CORDEX simulations
discussed in Section [4.2.2] and 4.3.3 respectively, whereby scales of a few
kilometers or tens of kilometers are reached. Even smaller scales, about a
100 m, can be reached with the use of computational fluid dynamics models.
At such scales, dynamics are turbulent, so that only statistical information
is relevant.

Dynamical downscaling presents the advantage of relying on fundamental
equations and on integrating information at small scales about topography,
land use, etc. Because of this, one expects dynamical downscaling approaches
to be relatively robust to parameter or forcing changes, although some pa-
rameters of the model are still calibrated on the historical period. It is known
to add value to global climate data (Hastie, Tibshirani, and Friedman [2009)).
However, dynamical downscaling is also a computationally intensive exercise.
In addition, the information downscaled by RCMs is still climatic, so that
integrated approaches are needed to translate this small-scale information
into an impact.

Statistical downscaling provides an alternative that does not rely on earth
science laws but rather on local information and statistical learning (Hastie,
Tibshirani, and Friedman 2009). Take as an example the assessment of
heat wave occurrence (a statistic) in the 21st century in the city center of
Grenoble, France. We know that historical temperatures in the city center of
Grenoble are not well reproduced by global reanalyses. Regional reanalyses
tend to improve these results by better resolving the impact of the Alps sur-
rounding Grenoble, but are still not satisfactory: the urban heat island is not
well resolved. Thus, not only reanalyses cannot be used here to project the
increase in temperatures in Grenoble associated with global warming, but
global climate projections may not be expected to resolve well local temper-
ature distributions. Assume, however, that a number of temperature sensors

11



are scattered in Grenoble so that time series of temperatures there for the
last few years are available. This information on the local climatic condi-
tions could be combined with information about global warming provided
by projections to estimate future changes in the temperature distribution in
Grenoble, and in particular the occurrence of heat waves. For instance, per-
haps the most basic approach would be to estimate a historical temperature
distribution from the local measurements, compute the difference between
the mean of this distribution and the temperature predicted by the global
model during the same period, and predict future temperature distributions
by shifting the local temperature distribution to follow the changes in the
mean temperature projected by the global model. This particular approach
is known as bias correction.

The design and choice of a particular downscaling method is an art in
itself. The particular impact considered, its location, the data and resources
available, need to be considered. Thus, Estrada et al. 2013 advise against ap-
plying downscaling automatically. The VALUE project (Maraun et al. |[2015)
provides a framework to assess the skills of different downscaling approaches
which has been applied other Europe by Gutiérrez et al. 2018. In particular,
downscaling studies often rely on reanalyses, the skills of which have a strong
impact on the result of downscaling (Brands et al. |2011)).

6 Climate data bias and uncertainty

The goal of this section is not to give an overview of all known biases in
climate data, as their relevance depends on the object of the risk assessment
study. Rather, we would like to warn that the availability of a large amount
of climate data should not lead to over-confidence in their use for risk assess-
ment. While global mean changes in temperature are relatively well resolved
by reanalyses and projections, this is not the case of all variables and statis-
tics:

e Some variables are more sensitive to measurement errors and modeling
assumptions. For instance, precipitation directly depends on cloud
microphysics which still constitutes one of the main weaknesses of earth
system models (Stocker et al. 2013)).

e The finer the spatial scale, the more biased the models. This is true
for both reanalyses and projections.
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e Statistics giving more weight to tails of distributions, such as extreme
values, tend to be more biased than, for instance, averages.

It is thus essential, in risk assessments relying on climate data, to estimate
errors originating from the climate data itself. Indeed, it is often found in
impact studies that a dominant source of errors comes from the climate data.
To compute a first, yet incomplete, estimate of errors coming from the climate
data, multiple data sources may be used. In the case of projections, multiple
CMIP and CORDEX models may be used. The number of reanalyses is not
as large, but several of them are available, and errors are reduced thanks to
observational constraints.

When dealing with 21st century projections, the main source of uncer-
tainty stems from the socio-economic scenario that the economic actors with
the largest footprint will follow. For that reason, several typical scenar-
ios need to be considered. As discussed in Section [£.3.2] the CMIP and
CORDEX databases collect simulations from different models that are forced
by different RCP scenarios. The latter may be used to prepare assessments or
indicators corresponding to different socio-economic scenarios. The problem
of choosing under uncertainty is still, however, pervasive.

7 Example: heatwaves in the Paris area

To illustrate the key messages of this report, we give the following example.
Our objective is to compute the evolution of the number of days of heatwave
over the end of the 20th century and over the 21st century at a given location
and from various climate data-sources. This example is described in the next
Section [7.1] while the methodology is further detailed in Section [7.2]

7.1 Description and interpretation

A heatwave is a type of extreme event increasingly impacting societies. The
risk associated with a heatwave depends on the vulnerability of the popu-
lation, such as its age, its access to water, etc. Here, we instead focus on
the intensity of a heatwave as a climate event and follow the definition given
in Ouzeau et al. 2015, Section 5.3.1:

Definition. A heatwave is defined as an abnormally hot period lasting more
than five consecutive days. Hot days are defined as days for which the max-
imum daily temperature is 5°C larger than a climatological reference value,
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counting only days belonging to a series of more than five consecutive hot
days. To obtain this reference value for each day of the year, one computes
the mean annual-cycle of the daily-maximum temperature simulated for the
reference period (1976-2005) [1980-2010, here], applying a running average
over five days to this annual cycle.

The SIRTA observational platform provides hourly temperature observa-
tions from 2003 to 2019 (Haeffelin et al.2005). We choose to study heatwaves
at the location of the platform, 48.718°N, 2.202°E (20km south of Paris).
This data is compared to a global reanalysis and to Regional Climate Model
(RCM) runs. The MERRA-2 reanalysis (Gelaro et al. 2017) covers the 1980
2019 period at a resolution of about half a degree. The RCM runs from the
Med-CORDEX exercise (Ruti et al. 2016]) are concatenated to cover both
the historical period (1950-2006) and the 21st century (2006-2100), using
projections for the RCP 8.5 scenario (the warmest, business-as-usual) at a
little less than half a degree of resolution. Two runs from the GUF and the
CMCC institutes are selected. Records from the nearest grid-point of these
gridded datasets to the SIRTA platform are analysed. MERRA-2’s nearest
grid point is at 48.500°N, 2.500°E (about 33 km from SIRTA) | while GUF’s
and CMCC'’s is at 48.524°N, 2.094°E (about 23km from SIRTA).

Four records of daily-maximum temperature are obtained from these
datasets. In addition, as a simple example of statistical downscalling, we
remove from the reanalysis and the two RCM runs the bias with respect to
the SIRTA data. These two sets of time series are represented in Fig.
and We then compute heatwave indices for each run and represent them
in Fig. [Idland [Id Thick lines correspond to smoothed versions of the yearly
time-series (thin lines) using a rolling average over 20 years. Note that the
rolling average uses fewer points when less than 20 years are available. For
instance, at the middle of the 12-years-long SIRTA time-series, only 12 points
are available and used.

We first observe that a strong bias (half a degree to several degrees) ex-
ists between the SIRTA observations (black) and both the reanalysis (gray)
and the RCM runs (blue and orange). This bias may be explained by mod-
eling errors, a poor representativity of the selected grid-box of the gridded
datasets with respect to the SIRTA station, or by (less likely) observational
errors in the reanalysis and the in situ observations. The RCM runs are also
significantly different from each other. This shows the importance of com-
paring multiple data sources and validating estimations against observation
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over some available period.

We also note from the erratic behaviour of the thin curves compared to
the thick, low-pass filtered, curves that there is a strong interannual vari-
ability in the maximum temperature. Zooming on the period covered by
the SIRTA record, Fig.[2] we can see that the correlation between MERRA-2
temperatures and the SIRTA temperatures is stronger than that between the
SIRTA temperatures and the RCM runs. Considering the chaotic nature of
the climate system, this may be understood from the fact that, contrary to
the RCM runs, the reanalysis is constrained by observations, and thus more
likely to follow the observed interannual variability. On the other hand, by
design, the reanalysis does not provide projections for the 21st century.

The bias correction, Fig. [Ib] allows us to reduce the gap between the
observations and the other records. However, we are not guaranteed that
this bias is stationary over time. For instance, during the 21st century, a
warmer climate may induce changes in physical processes which could result
in weaker or stronger biases.

Let us now focus on the heatwave index, Fig.[Id and[Id We can first note
that the observational record (black) appears to be too short (2002-2019) to
observe any trend in the number of heatwave days with this methodology.
From 1980 to 2019, a small trend is visible in the reanalysis (gray) and the
RCM runs (blue and orange), although its significance should be properly
tested. A very clear trend is, however, visible over the 21st century for both
RCM runs, although the magnitude of this trend differs significantly (by
about 70 days).

The heatwave index is less sensitive to biases, as it is defined as a difference
with respect to a reference annual cycle computed from the same dataset
(except for the SIRTA heatwave index, which is computed using the bias-
corrected MERRA-2 annual cycle).

Finally, note that we have focused here on the estimation of the number
of heatwave days from different climate data to illustrate basic methodologies
and their pitfalls. It remains then to estimate the actual damages associated
with these climate events.

7.2 Methodology

We now explain in more details the methodology used to obtain the results
of Section [Tl
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7.2.1 Downloading the data

The in-situ observations, the reanalysis and the projections are obtained
from the SIRTA observatory, NASA’s MERRA-2 and the Med-CORDEX

initiative.

SIRTA The SIRTA database is accessible free of cost for public research
and teaching applicationg] We download the SIRTA (Haeffelin et al. 2005)
temperature record via File Transfer Protocol (FTP) from SIRTA’s data-
download pageﬂ selecting atmospheric state/surface meteorology/Air temper-
ature/Meteorological variables with LMD station in zone 2 for the 2003/01 /03~
2019/01/01 period. The data is sampled every minute.

MERRA-2 NASA promotes the full and open sharing of all data with the
research and applications communities, private industry, academia, and the
general public. The MERRA-2 data is accessible from NASA’s GES DISCF),
after registration. To get the daily maximum temperature, the single-level
daily-statistics datasetf] should be selected.

Med-CORDEX Data from the Med-CORDEX project available on this

server is provided without charge and may be used for research and educa-

tion only. Commercial use of the data is not permitted. The Med-CORDEX

data is accessible through the Med-CORDEX FTPH. For instance, the daily-
maximum temperatures from the GUF historical run and RCP8.5 scenario

were respectively downloaded from ftp://www.medcordex.eu/MED-44/GUF/
MPI-ESM-LR/historical/r1ilpl/GUF-CCLM4-8-18/v1/day/tasmax/ and ftp:
//www .medcordex . eu/MED-44/GUF/MPI-ESM-LR/rcp85/r1ilpl/GUF-CCLM4-8-18/
vl/day/tasmax/.

7.2.2 Bias correction

The bias correction adjusts for differences in the mean between the SIRTA
maximum-temperature record and that of the reanalysis and RCM records.

6See SIRTA’s Data Policy.

"https://sirta.ipsl.fr/data_download.html

Shttps://disc.gsfc.nasa.gov/

%https://disc.gsfc.nasa.gov/datasets/M2SDNXSLV_5.12.4/summary?keywords=
MERRA-2

Wftp://www.medcordex.eu/
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To do so, we first select the period over which both records overlap. The
mean over this period of the record to be corrected is removed from it and
we add instead the mean of the SIRTA record over the same period. As
a result, the mean of the corrected record is the same as the mean of the
SIRTA record over the overlapping period.

To go further
e The Climate Data Guidel describes different sources of climate data.

e reanalyses.org focuses on reanalyses.

e |https://s-rip.ees.hokudai.ac.jp/pubs/index.html provides data from dif-
ferent reanalyses on common grids.

e Data used for downscaling from the VALUE project http://www.value-cost.
eu/data.

e The S-RIP report (Fujiwara et al. [2017) gives an overview of the dif-
ferent reanalysis systems.

e Chapter 12 of the Working Group I on The Physical Science Basig'|
contribution to the 6th Assessment Report of the IPCC and Chapter 16
of the Working Group II on Impacts, Adaptation and Vulnerability”
will cover climate risk assessment.
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A Glossary

Climate model

Climate vari-

ability

CMIP

Downscaling

ECMWF
Integrated
assessment

model

Physical  cli-

mate risk

Reanalysis

RCP

A physical model for the evolution of the Earth climate
in the long term (100+ years). Climate models are used
to make climate projections.

Natural variability of the Earth climate at the scales
longer than one year.

Coupled Model Intercomparison Project, an exercise led
by IPCC wherein different climate models are run under
the same conditions to produce multiple climate scenarios
which may be compared to evaluate the uncertainty of
future climate.

A procedure to refine the scale of climate models down to
that of local phenomena of interest.

European Centre for Medium-Range Weather Forecasts

A model which aims to describe the joint evolution of the
economy and the climate system.

Risk of destruction of assets / disruption of systems by
weather events related to climate change and climate vari-
ability.

In a reanalysis exercise, a climatological model is run over
a long period of time in the past, assimilating all available
observations as model constraints. This allows to inter-
polate available observations over regular time and space
domain. The standard practice in climatology, which we
folliw in this paper, is to replace historical data with re-
analysis data.

Representative Concentration Pathway, a scenario of
greenhouse gas emissions used to parameterize climate
models
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Figure 1: Yearly-mean daily-maximum temperature (top) and number of
heatwave days (bottom) without (left) and with (right) bias-correction.
Thick lines correspond to smoothed versions of the thin lines using a rolling
average over 20 years. Black lines are obtained from the SIRTA observa-
tional data from 2003 to 2019. Gray lines are obtained from the MERRA-2
reanalysis data from 1980 to 2019. Blue lines are obtained from the concate-
nation of the historical and RCP 8.5 CORDEX runs by the GUF institute.
Orange lines are obtained from the concatenation of the historical and RCP
8.5 CORDEX runs by the CMCC institute. The number of heatwave days
are computed following the methodology described in Ouzeau et al. 2015,
Section 5.3.1, with 1980-2010 as reference period. Since the SIRTA record is
too short, we use the bias-corrected MERRA-2 data as reference to compute
the number of heatwave days in the SIRTA record. The bias correction is
simply performed by removing from all non-SIRTA records their mean over
the SIRTA period and adding instead the mean of the SIRTA record.
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