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1 Introduction

The notion of moral hazard was introduced by Adam Smith as a major source of economic

risk which occurs in any situation of interacting agents where one of the participants may

take more risks whenever the burden of those risks is affected to the others. As the economic

activity is based on social interactions, with agents having different information and different

objectives, it is fundamental to avoid the negative effects of moral hazard on the society.

For instance, insurance contracts set conditions under which an economic agent is covered

against some risk. Clearly, fully insured drivers do not have incentive to increase caution,

full health insurance misleadingly lowers out-of-pocket expenses, and thus increases demand

for medical services. Similarly, un-employment insurance may give negative incentive to

return to the job market. In order to prevent from the last negative effects of moral haz-

ard, insurance companies propose only partial compensation of the incurred loss, and the

corresponding contracts index the insurance premium on the observed performance of the

agent, as inferred from the claimed expenses. Contract theory aims at finding the terms of

a contract which best incentivizes the insured for a moral and responsible behavior.

The ongoing digital transition introduces numerous examples of decentralized decision

mechanisms which are self-managed by means of appropriate online devices opening access

to a large number of participants. Such facilities provide the possibility of decision making

at a very high frequency which maybe reduced to the continuous time context. Adapting

contract theory to this context is crucial in order to solve the regulation and the optimal

mechanism design of such devices. In this note, we focus on the Principal-Agent approach

for the modeling of moral hazard in continuous time, and we present a systematic solution

methodology.
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Example 1. The Maker-Taker fees problem of an online platform

aims at incentivizing market makers (liquidity makers) to increase

the market liquidity so as to attract brokers (liquidity takers), thus

increasing the platform revenue accumulated by the fees on the

realized transactions. This is turn contributes to increase market

liquidity, thus improving the social benefit from the market.

In the situation illustrated by the present image, the broker pays

30 cts, the platform distributes 25 cts compensation to the market

maker and makes a revenue of 5 cts.

Example 2. Smart meters (as Linky in France) give access to con-

tinuous time information about the electricity consumption pro-

file. This offers to the electricity provider company the possibility

of impacting the consumer demand by appropriate tarif signals,

so as to improve its management by making use of the demand

flexibility.

Example 3. An investor delegates the management of her capital

to a fund manager. The latter devotes the effort of choosing the

portfolio allocation, possibly in very high frequency, and balances

the cost of effort with the compensation agreed on by the contract.

The investor optimally chooses the terms of the contract so as to

best incentivize the fund manager to work for her interest.

2 Management delegation and optimal contracting

Let us start with the simplest delegation model between a Principal (e.g. employer) and an

Agent (e.g. employee). We consider the simplest one period model, with contracting and

management decisions taken in the beginning of period, while the outcomes are collected at

the end of period.

The Principal owns a production asset, with outcome value at the end of period denoted

by X, and delegates its management to the Agent. The terms of this interaction between

the Principal and the Agent is an agreement at the starting time on the contract which sets

the compensation salary ξ.

Given the contract ξ, the Agent devotes effort α for the project, inducing the following

(simplest) impact on the value of the production asset:

X := α +X0, with cost of effort C(α),

2



for some given random value X0, and some cost function C : R −→ R. Assuming that the

Agent and Principal preferences are defined by utility functions UA and UP , respectively,

their criteria are defined by the expected utilities

JA(ξ, α) := E
[
UA(ξ)− C(α)

]
and JP (ξ, α) := E

[
UP
(
X − ξ

)]
.

Here, we see clearly that a constant salary does not serve the objective of the Principal as

the Agent’s criterion would not involve the value of the output. In order to force the interest

of the Agent in the production output X, it is clear that the contract ξ = ξ(X) should be

indexed on the performance of the Agent as deduced from the observation of the output X.

In order to avoid degenerate situations, we assume that contracts are restricted to the

following set of acceptable contracts

Ξ(α, ρ) :=
{
ξ : JA(ξ, α) ≥ ρ

}
,

for some reservation utility ρ representing the Agent’s acceptance level. This condition

allows to avoid that the Principal diverts attention from the production output and takes

instead benefit from the Agent’s contract !

We now formulate two optimal contracting problems which differ by the power attributed

to the Principal.

(FB) First best contracting. We first describe the (unrealistic) situation where the

Principal imposes to the Agent the amount of effort to be devoted. Then, the Principal’s

problem is formulated by the maximization problem:

vp := sup
α,ξ∈Ξ(α,ρ)

JP (ξ, α). (2.1)

Introducing a Lagrange multiplier λ for the Agent’s participation constraint, this reduces to

vp = inf
λ≥0

sup
α,ξ

JP (ξ, α) + λ
(
JA(ξ, α)− ρ

)
= inf

λ≥0
sup
α,ξ

E
[
UP (X − ξ) + λ

(
UA(ξ)− C(α)− ρ

)]
.

Direct differentiation with respect to ξ provides the so-called Borch rule in risk sharing:

U ′P (X − ξ)
U ′A(X)

= λ.

In order to further characterize the optimal contract, we assume that both actors have a

constant absolute risk aversion (CARA) coefficients ηA, ηP > 0, i.e. UA(x) = η−1
A e−ηAx and

UP (x) = η−1
P e−ηP x. Then the optimal contract is given by:

ξ̂fb =
ηA

ηA + ηP
X +

lnλ

ηA + ηP
.

In other words, the first best optimal contract consists in offering a fixed constant payment

and a proportion of the total production. In particular, in the limiting case ηA −→ ∞ of

risk neutral Agent, the Principal offers the total production against a constant payment.
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(SB) Second best contracting. We now assume that the Agent may choose the effort

to devote to the project as an optimal response to the contract proposed by the Principal.

The Agent’s decision problem is then defined by

VA(ξ) := sup
α
JA(ξ, α) = JA

(
ξ, α̂(ξ)

)
,

where α̂(ξ) is the optimal response of the Agent to the contract ξ, assumed unique for

simplicity. Denoting the corresponding value of output by X̂ := α̂(ξ) + X0, the Principal

optimal contracting problem is:

VP := sup
(α̂(ξ),ξ)∈Ξ(ρ)

E
[
UP
(
X̂ − ξ(X̂)

)]
= sup

ξ:VA(ξ)≥ρ
E
[
UP
(
X̂ − ξ(X̂)

)]
, (2.2)

i.e. the Principal choses optimally the contract ξ given the optimal response of Agent.

No information rent in the one-period setting Clearly vP ≥ VP . The information rent

is defined by the difference R := vP − VP representing the loss of utility incurred by the

Principal by giving up the power of imposing the required effort to the Agent.

• When the Agent is risk neutral UA(x) = ax + b is affine, then one can see easily that

R = 0, i.e. the Agent has no benefit from the power given up by the Principal;

• In fact, even in a situation of risk averse Agent, this result turns out to hold true

for a large class of distributions for X0. However, it is shown in the literature that

this corresponds to a degenerate situation as VP can only be realized as a limit of

nearly-optimal contracts.

• Because of this, the economic literature focused on special types of parameterized

contracts, e.g. affine contracts ξ(x) = ξ0 + ξ1x corresponding to a fixed salary ξ0 and

a proportional component to the realized output.

3 Continuous time contracting for drift management

The continuous-time formulation of the problem, as introduced by Hölstrom & Milgrom

1987, gained an important attention as it induces a possible information rent for a risk

averse Agent. In the present setting the output process is defined by the dynamics

dXt = αtdt+ σdWt,

where the Agent effort α is now adjusted in continuous time, W is a Brownian motion

representing an exogenous white noise, and σ is the volatility of the output. The Agent and

Principal criteria are now given by

JA(ξ, α) := E
[
e−rTUA(ξ)−

∫ T

0

e−rtc(αt)dt
]

and JP (ξ, α) := E
[
e−RTUP (XT − ξ)

]
.
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The first best and second best problems are defined similarly to the one-period model by

(2.1) and (2.2) respectively.

The optimal contract is characterized by stochastic control techniques. As a first

ingredient, we introduce the so-called Hamiltonian

H(z) := sup
α
{αz − c(α)} = α̂(z)z − c

(
α̂(z)

)
,

where the maximizer α̂(z) is assumed unique for simplicity. We next introduce a new state

Y defined by some initial value Y0 and a proportional payment process Z:

Yt = Y0 +

∫ t

0

er(t−s)
(
ZsdXs −H(Zs)ds

)
.

We emphasize that the compensation process Z may depend on the past history of the

output process X. The following reduction of the game problem is stated in the context of

a one-to-one Agent utility function on R. For othe utility function (as the important CARA

case), the result is valid after appropriate adaptation.

Let UA be one-to-one on R. Then the Principal value of the SB contracting reduces to

VP = sup
Y0≥ρ

V (Y0), where V (Y0) := sup
Z
JP
(
YT , α̂(Z)

)
= sup

Z
E
[
e−RTUP (X̂T − U−1

A (YT )
)]
.

Notice that V (Y0) is the standard stochastic control problem with controlled dynamics

dX̂t = α̂(Zt)dt+ σdWt and dYt =
[
rYt + c

(
α̂(Zt)

)]
dt+ ZtσdWt.

By the classical tools of stochastic control theory, V (Y0) = v(0, X0, Y0), where v is the

solution of the corresponding Hamilton-Jacobi-Bellman equation (HJB):

∂tv −Rv − ryvy +
1

2
σ2vxx + h(vx, vy, vyy, vxy) = 0, v|t=T = UP

(
x− U−1

A (y)
)
,

where h(vx, vy, vyy) := sup
z

{
α̂(z)vx + c

(
α̂(z)

)
vy +

1

2
σ2
(
z2vyy + 2zvxy

)}
.

In general, one does not hope for an explicit solution of this partial differential equation.

Nevertheless, there is a long tradition of numerical approximation techniques ranging from

finite differences methods to the most recent Monte Carlo methods for such nonlinear prob-

lems.

Finally, we may express the optimal contract in terms of the maximizer Y ∗0 of V (Y0) over

the range Y0 ≥ ρ, and the maximizer ẑ(t, x, y) of h (which depends on vx, vy, vyy): differential

equation
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ξ̂ = Y ∗T with Y ∗t = Y ∗0 +

∫ t

0

er(t−s)
(
Z∗sdXs −H(Z∗s )ds

)
and Z∗t := ẑ(t,Xt, Yt).

In words, the optimal contract consists of a constant payment Y ∗0 , a linear payment with

instantaneous decomposition Z∗dX, and a substraction of the maximum payment that the

rational Agent can hope for.

An explicit example. The last methodology is easily adapted to the case where the agent’s

criterion is defined by JP (ξ, α) = E
[
− e−ηA(ξ−

∫ T
0 c(αt)dt)

]
, where ηA > 0 is the (constant)

absolute risk aversion coefficient of the agent, and the agent’s discount factor is r = 0.

Similarly, let the principal’s utility function be defined by a constant risk aversion coefficient

ηB > 0, i.e. UP (x) = −e−ηP x, and zero discount factor R = 0. Finally, consider the case of

a quadratic cost of effort c(a) := 1
2
c0a

2. Then, the last methodology leads to the following

(constant) optimal effort and optimal contract:

α∗t =
z∗

c0

and ξ̂ = ρ+ z∗(XT −X0)−H(z∗)T, where z∗ :=
1
c0

+ ηPσ
2

1
c0

+ (ηA + ηP )σ2
.

For a risk neutral agent ηA = 0, notice that z∗ = 1, and we recover the first order optimal

contract ξ̂fb, in agreement with the comment at the end of Section 2.

Limited liability. In practice, the agent is not expected to have access to infinite amount

of cash. Therefore, the Principal cannot offer a contract which may induce any negative

payment to the agent, and the optimal contracting problem should be formulated under the

addition restriction to the set of contracts which obey to the limited liability restriction.

This leads to the following modification of the principal’s second best (2.2) to the following

problem:

V ll
P := sup

ξ:VA(.,ξ)≥ρ
E
[
UP
(
X̂−ξ(X̂)

)]
, where VA(t, ξ) := sup

α
Et
[
e−r(T−t)UA(ξ)−

∫ T

t

e−r(s−t)c(αs)ds
]
,

and Et denotes the expectation conditional conditional to the available information at time

t. In words, for all t ≤ T , VA(t, ξ) is the agent dynamic value function defined similar to the

initial problem by simply moving the time origin to t.

The previous methodology is easily adapted to this context, and leads to the following

characterization:

Under the limited liability constraint, the Principal value of the SB contracting reduces to

V ll
P = sup

Y≥ρ
V (Y0), where V (Y0) := sup

Z
JP
(
YT , â(Z)

)
= sup

Z
E
[
e−RTUP (X̂T − U−1

A YT
)]
.

The resulting problem is again a stochastic control problem, with an additional feature of

a state constraint Yt ≥ ρ for all t ∈ [0, T ]. This additional constraint can be handled by

standard tools in stochastic control theory.
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4 Optimal contracting for volatility management

The notion of hedging is a key finding at the origin of the development of financial mathemat-

ics. This was highlighted by the seminal works of Black & Scholes for derivatives valuation,

and Merton for portfolio management. In both contexts, the continuous time updating of

the portfolio leads typically to a portfolio value dynamics dXt = ∆tdSt, where ∆ represent

the portfolio holding of risky asset at each point in time, and S the price process of the

risky asset. In the present context, X is the output process, the fund manager in charge of

designing the portfolio composition ∆ is the Agent, and the Principal is the investor.

Stipulating appropriate dynamics for the process S, we arrive to an output process with

dynamics of the form

dXt = αtdt+ σtdWt,

where the Agent’s effort has now two components:

• σt representing the position in risky assets (in direct relation with ∆t),

• αt may be viewed as the (instantaneous) choice of a subset of assets for the portfolio

optimization.

We update the Agent’s and the Principal’s criteria so as to accounts for the cost of the

additional effort σ:

JA(ξ, α, σ) := E
[
e−rTUA(ξ)−

∫ T

0

e−rtc(αt, σt)dt
]

and JP (ξ, α, σ) := E
[
e−RTUP (XT − ξ)

]
.

In order to adapt the methodology described in the previous section, we start by introducing

the Hamiltonian suitable with the present setting:

H(z, γ) := sup
α,σ

{
αz +

1

2
σ2γ − c(α, σ)

}
= α̂(z, γ)z +

1

2
σ̂(z, γ)2γ − c

(
α̂(z, γ), σ̂(z, γ)

)
. (4.1)

where the maximizer (α̂, σ̂) is again assumed to be unique for simplicity. Similar to the

previous section, we introduce a new state Y defined by an initial value Y0 and the dynamics

Yt = Y0 +

∫ t

0

er(t−s)
(
ZsdXs +

1

2
Γsd〈X〉s −H(Zs,Γs)ds

)
. (4.2)

Here, 〈X〉 is the quadratic variation of the output process X, i.e. the squared volatility of

X. The quadratic variation 〈X〉 is an indicator of the riskiness of the value of the output,

and can be computed from the observation of the path of X as the following limit:

〈X〉t = lim
n→∞

n∑
i=1

(
Xtni
−Xtni−1

)2
=

∫ t

0

σ2
sds,

where 0 = tn0 < tn1 < . . . < tnn = t, with time step tni − tni−1 → 0 as n→∞ for all i. Similar

to the uncontrolled volatility case, we have:
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The SB optimal contracting problem reduces to

VP = sup
Y0≥ρ

V (Y0), where V (Y0) := sup
Z,Γ

JP
(
YT , â(Z,Γ), b̂(Z,Γ)

)
.

Again, V (Y0) is the standard stochastic control problem with controlled dynamics

dX̂t = α̂(Zt,Γt)dt+ σ̂(Zt,Γt)dWt and dYt =
[
rYt + c

(
α̂(z, γ), σ̂(z, γ)

)]
dt+ Ztσ̂(Zt,Γt)dWt,

and with characterization as V (Y0) = v(0, X0, Y0), where v is the solution of the Hamilton-

Jacobi-Bellman equation (HJB):

∂tv −Rv − ryvy + h(vx, vy, vxx, vyy, vxy) = 0, v|t=T = UP (x− y),

where h(vx, vy, vxx, vyy, vxy) := sup
z,γ

{
α̂(z, γ)vx + c

(
α̂(z, γ), σ̂(z, γ)

)
vy

+
1

2
σ̂(z, γ)2

(
vxx + z2vyy + 2vxy

)}
.

Here again, the solution of the last partial differential equation can be approximated by some

numerical method, which also produces as a by-product an approximation of the maximizers

ẑ(t, x, y) and γ̂(t, x, y) of h (which depend on the partial derivatives of v). The last step is

to find the maximizer Y ∗0 of V (Y0) over the range Y0 ≥ ρ, inducing the optimal contract

ξ̂ = Y ∗T with Y ∗t = Y ∗0 +

∫ t

0

er(t−s)
(
Z∗sdXs +

1

2
Γ∗td〈X〉t −H(Z∗s ,Γ

∗
t )dt

)
and (Z∗t ,Γ

∗
t ) := (ẑ, γ̂)(t,Xt, Yt).

In the present situation we see that the optimal contract contains the additional infinitesi-

mal contribution Γ∗td〈X〉t. One typically expects a negative Γ∗ so that the optimal contract

settled by the Principal discourages the Agent from taking unconsidered risks.

Example Suppose that the principal delegates to the agent the management of a risky

project. The agent chooses volatility components of the output process over various risk

factors. The principal has no access to the individual components of the quadratic variation,

thus inducing a situation of moral hazard with respect to the risk choices of the agent. This

model is solved in Cvitanić, Possamäı & Touzi. The optimal contract is shown to be linear

in the output and the corresponding quadratic variation. Numerical experiments reveal a

significant loss of efficiency if the principal does not use the quadratic variation component

of the optimal contract. However, there are parameter values for which the principal rewards

the agent for higher values of quadratic variation, thus, for taking higher risk.
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5 The multiple agents case

The previous approach extends naturally to the multiple agents context.

We start with the case of non-interacting finite agents i = 1, . . . , I. Each agent i has the

delegation to manage an output X i, with dynamics dX i = αitdt+ σitdWt for some Brownian

motion W , and some effort processes νi = (αi, βi), and is characterized by the utility index

J iA(ξ, ν) := E
[
e−r

iTU i
A(ξi)−

∫ T
0
e−r

itc(νt)dt
]
, for some cost function ci(νi) and discount factor

ri. In this case, we introduce a Hamiltonian H i together with an additional state Y i for

each agent defined similar to (4.1)-(4.2) by:

Y i
t := Y i

0 +

∫ t

0

er
i(t−s)

(
Zi
sdX

i
s +

1

2
Γisd〈X i〉s −H i(Zi

s,Γ
i
s)ds

)
, t ∈ [0, T ].

The Principal’s problem is defined by the utility index JP
(
(ξi)i∈I , ν

i
)

:= E
[
e−RTUP

(∑I
i=1X

i
T−

ξi
)]

, and the contracting problem between the Principal and the group of Agents is defined

by a Stackelberg game similar to the previous sections, with participation constraint ρi.

Denoting by ν̂i(zi, γi) the maximizer of Agent i’s Hamiltonian H i, and Y0 := (Y 1
0 , . . . , Y

I
0 ),

it follows that the Principal’s problem reduces to a standard control problem:

VP = sup
Y i
0≥ρi

V (Y0), where V (Y0) := sup
Zi,Γi

JP
(
(Y i

T )i∈I , ν̂
i(Zi,Γi)

)
.
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Similar to the one-agent case, the last control problem can be characterized by means of

the corresponding HJB equation. Moreover , the maximizers Ŷ i
0 , Ẑ

i, Γ̂i induce an optimal

contract

ξ̂i = Ŷ i
0 +

∫ T

0

er
i(T−s)

(
Ẑi
sdX

i
s +

1

2
Γ̂isd〈X i〉s −H i(Ẑi

s, Γ̂
i
s)ds

)
, i = 1, . . . , I.

The case of interacting agents can be dealt with in a similar way. For instance, if the agents

behavior is described as a Nash equilibrium, the last methodology is easily adapted to reflect

this situation. The case of a continuum of agents can also be addressed by the same method.

Literature overview

Since many decades, economic models accounting for moral hazard have been de-

veloped in the economics literature, with real applications in our every day life. We

refer to the books by Laffont & Martimort [1] and Bolton & Dewatripont [2] for an

overview of the corresponding discrete-time literature. The first continuous-time

formulation, as introduced by Holstrom & Milgrom 1985, highlighted the suitability

of the continuous-time setting for a convenient resolution of the problem, thanks to

the availability of differential calculus. We refer to the book of Cvitanić & Zhang

(2008) for a comprehensive exposition of the theory. The seminal work of Holstrom

& Milgrom was followed by an important stream of literature, and was even further

developed after the very inspiring work of Sannikov 2004. The solution method of

the present note was introduced by Cvitanić, Possamäı & Touzi 2015.
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